Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spectrotemporal modulation provides a unifying framework for auditory cortical asymmetries

Subjects

Abstract

The principles underlying functional asymmetries in cortex remain debated. For example, it is accepted that speech is processed bilaterally in auditory cortex, but a left hemisphere dominance emerges when the input is interpreted linguistically. The mechanisms, however, are contested, such as what sound features or processing principles underlie laterality. Recent findings across species (humans, canines and bats) provide converging evidence that spectrotemporal sound features drive asymmetrical responses. Typically, accounts invoke models wherein the hemispheres differ in time–frequency resolution or integration window size. We develop a framework that builds on and unifies prevailing models, using spectrotemporal modulation space. Using signal processing techniques motivated by neural responses, we test this approach, employing behavioural and neurophysiological measures. We show how psychophysical judgements align with spectrotemporal modulations and then characterize the neural sensitivities to temporal and spectral modulations. We demonstrate differential contributions from both hemispheres, with a left lateralization for temporal modulations and a weaker right lateralization for spectral modulations. We argue that representations in the modulation domain provide a more mechanistic basis to account for lateralization in auditory cortex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Time, time–frequency and modulation domain representations for sound waveforms.
Fig. 2: The modulation asymmetry hypothesis.
Fig. 3: Overview of the filtering technique used to produce modulation domain filtered stimuli.
Fig. 4: Psychophysical performance as a function of temporal and spectral modulations in two separate experiments (diotic and dichotic).
Fig. 5: MEG results showing significant correlations between neural power and degree of stimulus modulation.
Fig. 6: Intracranial ECoG recordings in a patient with bilateral stereotactic depth electrodes, sampling superior temporal cortices.

Code availability

All stimuli construction code is available on a public repository https://github.com/flinkerlab/SpectroTemporalModulationFilter. Experiment and analysis code is available from the corresponding author upon reasonable request.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Broca, P. Remarques sur le siege de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bull. et mémoires de la Société Anatomique de Paris 36, 330–356 (1861).

    Google Scholar 

  2. 2.

    Wernicke, C. Der aphasische Symptomencomplex; eine psychologische Studie auf anatomischer Basis (Cohn & Weigert, Breslau, 1874).

  3. 3.

    Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    CAS  PubMed  Google Scholar 

  4. 4.

    Hagoort, P. & Indefrey, P. The neurobiology of language beyond single words. Annu. Rev. Neurosci. 37, 347–362 (2014).

    CAS  PubMed  Google Scholar 

  5. 5.

    Friederici, A. D. The brain basis of language processing: from structure to function. Physiol. Rev. 91, 1357–1392 (2011).

    PubMed  Google Scholar 

  6. 6.

    Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12, 718–724 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Price, C. J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage 62, 816–847 (2012).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Goetz, C. G. Textbook of Clinical Neurology 3rd edn, 355 (2007).

  9. 9.

    Kandel, E. R., Schwartz, J. H., Jessell, T. M. Principles of Neural Science 4th edn, 457–469 (McGraw-Hill, New York, 2000).

  10. 10.

    Bozic, M., Tyler, L. K., Ives, D. T., Randall, B. & Marslen-Wilson, W. D. Bihemispheric foundations for human speech comprehension. Proc. Natl Acad. Sci. USA 107, 17439–17444 (2010).

    CAS  PubMed  Google Scholar 

  11. 11.

    Overath, T., McDermott, J. H., Zarate, J. M. & Poeppel, D. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat. Neurosci. 18, 903–911 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zatorre, R. J. & Gandour, J. T. Neural specializations for speech and pitch: moving beyond the dichotomies. Phil. Trans. R. Soc. Lond. 363, 1087–1104 (2008).

    Google Scholar 

  13. 13.

    McGettigan, C. & Scott, S. K. Cortical asymmetries in speech perception: what’s wrong, what’s right and what’s left? Trends Cognit. Sci. 16, 269–276 (2012).

    Google Scholar 

  14. 14.

    Efron, R. Temporal perception, aphasia and déjà vu. Brain 86, 403–424 (1963).

    CAS  PubMed  Google Scholar 

  15. 15.

    Schwartz, J. & Tallal, P. Rate of acoustic change may underlie hemispheric specialization for speech perception. Science 207, 1380–1381 (1980).

    CAS  PubMed  Google Scholar 

  16. 16.

    Tallal, P. & Piercy, M. Defects of non-verbal auditory perception in children with developmental aphasia. Nature 241, 468–469 (1973).

    CAS  PubMed  Google Scholar 

  17. 17.

    Ross, E. D. & Mesulam, M.-M. Dominant language functions of the right hemisphere? Prosody and emotional gesturing. Arch. Neurol. 36, 144–148 (1979).

    CAS  PubMed  Google Scholar 

  18. 18.

    Tucker, D. M., Watson, R. T. & Heilman, K. M. Discrimination and evocation of affectively intoned speech in patients with right parietal disease. Neurol. 27, 947–947 (1977).

    CAS  Google Scholar 

  19. 19.

    Robin, D. A., Tranel, D. & Damasio, H. Auditory perception of temporal and spectral events in patients with focal left and right cerebral lesions. Brain Lang. 39, 539–555 (1990).

    CAS  PubMed  Google Scholar 

  20. 20.

    Zatorre, R. J. Pitch perception of complex tones and human temporal-lobe function. J. Acoust. Soc. Am. 84, 566–572 (1988).

    CAS  PubMed  Google Scholar 

  21. 21.

    Zatorre, R. J., Evans, A. C., Meyer, E. & Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 256, 846–849 (1992).

    CAS  PubMed  Google Scholar 

  22. 22.

    Belin, P. et al. Lateralization of speech and auditory temporal processing. J. Cogn. Neurosci. 10, 536–540 (1998).

    CAS  PubMed  Google Scholar 

  23. 23.

    Zatorre, R. J., Belin, P. & Penhune, V. B. Structure and function of auditory cortex: music and speech. Trends Cognit. Sci. 6, 37–46 (2002).

    Google Scholar 

  24. 24.

    Poeppel, D. The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’. Speech Commun. 41, 245–255 (2003).

    Google Scholar 

  25. 25.

    Scott, S. K. & McGettigan, C. Do temporal processes underlie left hemisphere dominance in speech perception? Brain Lang. 127, 36–45 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Gervain, J. Near-infrared spectroscopy: recent advances in infant speech perception and language acquisition research. Front. Psychol. 5, 481 (2014).

    Google Scholar 

  27. 27.

    Luo, H. & Poeppel, D. Cortical oscillations in auditory perception and speech: evidence for two temporal windows in human auditory cortex. Front. Psychol. 3, 170 (2012).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Okamoto, H. & Kakigi, R. Hemispheric asymmetry of auditory mismatch negativity elicited by spectral and temporal deviants: a magnetoencephalographic study. Brain Topogr. 28, 471–478 (2015).

    PubMed  Google Scholar 

  29. 29.

    Thompson, E. C. et al. Hemispheric asymmetry of endogenous neural oscillations in young children: implications for hearing speech in noise. Sci. Rep. 6, 19737 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ratcliffe, V. F. & Reby, D. Orienting asymmetries in dogs’ responses to different communicatory components of human speech. Curr. Biol. 24, 2908–2912 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Washington, S. D. & Tillinghast, J. S. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat. Front. Neurosci. 9, 143 (2015).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Washington, S. D. & Kanwal, J. S. Sex-dependent hemispheric asymmetries for processing frequency-modulated sounds in the primary auditory cortex of the mustached bat. J. Neurophysiol. 108, 1548–1566 (2012).

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    De Valois R. L. & De Valois K. K. Spatial Vision (Oxford Univ. Press, 1990).

  34. 34.

    Shapley, R. & Lennie, P. Spatial frequency analysis in the visual system. Annu. Rev. Neurosci. 8, 547–581 (1985).

    CAS  PubMed  Google Scholar 

  35. 35.

    Kowalski, N., Depireux, D. A. & Shamma, S. A. Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J. Neurophysiol. 76, 3503–3523 (1996).

    CAS  PubMed  Google Scholar 

  36. 36.

    Woolley, S. M. N., Fremouw, T. E., Hsu, A. & Theunissen, F. E. Tuning for spectro-temporal modulations as a mechanism for auditory discrimination of natural sounds. Nat. Neurosci. 8, 1371–1379 (2005).

    CAS  PubMed  Google Scholar 

  37. 37.

    Elhilali, M., Chi, T. & Shamma, S. A. A spectro-temporal modulation index (STMI) for assessment of speech intelligibility. Speech Commun. 41, 331–348 (2003).

    Google Scholar 

  38. 38.

    Elliott, T. M. & Theunissen, F. E. The modulation transfer function for speech intelligibility. PLoS Comput. Biol 5, e1000302 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Arnal, L. H., Flinker, A., Kleinschmidt, A., Giraud, A.-L. & Poeppel, D. Human screams occupy a privileged niche in the communication soundscape. Curr. Biol. 25, 2051–2056 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Gross, J. et al. Speech rhythms and multiplexed oscillatory sensory coding in the human brain. Plos Biol. 11, e1001752 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Schönwiesner, M. & Zatorre, R. J. Spectro-temporal modulation transfer function of single voxels in the human auditory cortex measured with high-resolution fMRI. Proc. Natl Acad. Sci. USA 106, 14611–14616 (2009).

    PubMed  Google Scholar 

  42. 42.

    Santoro, R. et al. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLoS Comput. Biol. 10, e1003412 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Pasley, B. N. et al. Reconstructing speech from human auditory cortex. PLoS Biol. 10, e1001251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Poeppel, D. Pure word deafness and the bilateral processing of the speech code. Cognit. Sci. 25, 679–693 (2001).

    Google Scholar 

  45. 45.

    Moore, B. C. J. Auditory filter shapes derived in simultaneous and forward masking. J. Acoust. Soc. Am. 70, 1003 (1981).

    CAS  PubMed  Google Scholar 

  46. 46.

    Ghitza, O. On the upper cutoff frequency of the auditory critical-band envelope detectors in the context of speech perception. J. Acoust. Soc. Am. 110, 1628–1640 (2001).

    CAS  PubMed  Google Scholar 

  47. 47.

    Drullman, R., Festen, J. M. & Plomp, R. Effect of reducing slow temporal modulations on speech reception. J. Acoust. Soc. Am. 95, 2670–2680 (1994).

    CAS  PubMed  Google Scholar 

  48. 48.

    Chi, T., Gao, Y., Guyton, M. C., Ru, P. & Shamma, S. Spectro-temporal modulation transfer functions and speech intelligibility. J. Acoust. Soc. Am. 106, 2719 (1999).

    CAS  PubMed  Google Scholar 

  49. 49.

    Jaeger, T. F. Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. J. Mem. Lang. 59, 434–446 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Lawrence, M. A. Package ‘ez’. http://github.com/mike-lawrence/ez (R package, 2016).

  51. 51.

    Prins, N. & Kingdom, F. A. A. Applying the model-comparison approach to test specific research hypotheses in psychophysical research using the Palamedes Toolbox. Front. Psychol. 9, 1250 (2018).

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kimura, D. Functional asymmetry of the brain in dichotic listening. Cortex 3, 163–178 (1967).

    Google Scholar 

  53. 53.

    Shamma, S. On the role of space and time in auditory processing. Trends Cognit. Sci. 5, 340–348 (2001).

    CAS  Google Scholar 

  54. 54.

    Venezia, J. H., Hickok, G. & Richards, V. M. Auditory ‘bubbles’: efficient classification of the spectrotemporal modulations essential for speech intelligibility. J. Acoust. Soc. Am. 140, 1072–1088 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Houtgast, T. & Steeneken, H. J. M. A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. J. Acoust. Soc. Am. 77, 1069–1077 (1985).

    Google Scholar 

  56. 56.

    Ding, N. et al. Temporal modulations in speech and music. Neurosci. Biobehav. Rev. 81, 181–187 (2017).

    PubMed  Google Scholar 

  57. 57.

    Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J. & Ekelid, M. Speech recognition with primarily temporal cues. Science 270, 303–304 (1995).

    CAS  PubMed  Google Scholar 

  58. 58.

    Gabor, D. Theory of communication. Part 1: the analysis of information. J. Inst. Electr. Eng. 93, 429–441 (1946).

    Google Scholar 

  59. 59.

    Joris, P. X., Schreiner, C. E. & Ress, A. Neural processing of amplitude-modulated sounds. Physiol. Rev. 84, 541–577 (2004).

    CAS  PubMed  Google Scholar 

  60. 60.

    Overath, T., Zhang, Y., Sanes, D. H. & Poeppel, D. Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: fMRI evidence. J. Neurophysiol. 107, 2042–2056 (2012).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Zatorre, R. J. & Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Liégeois-Chauvel, C., Lorenzi, C., Trébuchon, A., Régis, J. & Chauvel, P. Temporal envelope processing in the human left and right auditory cortices. Cereb. Cortex 14, 731–740 (2004).

    PubMed  Google Scholar 

  63. 63.

    Okamoto, H., Stracke, H., Draganova, R. & Pantev, C. Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change. Cereb. Cortex 19, 245–2297 (2009).

    Google Scholar 

  64. 64.

    Wang, Y. et al. Sensitivity to temporal modulation rate and spectral bandwidth in the human auditory system: MEG evidence. J. Neurophysiol. 107, 2033–2041 (2012).

    PubMed  Google Scholar 

  65. 65.

    Schönwiesner, M., Rübsamen, R. & Cramon, Von,D. Y. Hemispheric asymmetry for spectral and temporal processing in the human antero‐lateral auditory belt cortex. Eur. J. Neurosci. 22, 1521–1528 (2005).

    PubMed  Google Scholar 

  66. 66.

    Jamison, H. L., Watkins, K. E., Bishop, D. V. M. & Matthews, P. M. Hemispheric specialization for processing auditory nonspeech stimuli. Cereb. Cortex 16, 1266–1275 (2006).

    PubMed  Google Scholar 

  67. 67.

    Boemio, A., Fromm, S., Braun, A. & Poeppel, D. Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci. 8, 389–395 (2005).

    CAS  PubMed  Google Scholar 

  68. 68.

    Overath, T., Kumar, S., Kriegstein, von, K. & Griffiths, T. D. Encoding of spectral correlation over time in auditory cortex. J. Neurosci. 28, 13268–13273 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Hyde, K. L., Peretz, I. & Zatorre, R. J. Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia 46, 632–639 (2008).

    PubMed  Google Scholar 

  70. 70.

    Liégeois-Chauvel, C., de Graaf, J. B., Laguitton, V. & Chauvel, P. Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb. Cortex 9, 484–496 (1999).

    PubMed  Google Scholar 

  71. 71.

    Kriegstein, von et al. How the human brain recognizes speech in the context of changing speakers. J. Neurosci. 30, 629–638 (2010).

    Google Scholar 

  72. 72.

    Arsenault, J. S. & Buchsbaum, B. R. Distributed neural representations of phonological features during speech perception. J. Neurosci. 35, 634–642 (2015).

    CAS  PubMed  Google Scholar 

  73. 73.

    Millman, R. E., Woods, W. P. & Quinlan, P. T. Functional asymmetries in the representation of noise-vocoded speech. NeuroImage 54, 2364–2373 (2011).

    PubMed  Google Scholar 

  74. 74.

    Obleser, J., Eisner, F. & Kotz, S. A. Bilateral speech comprehension reflects differential sensitivity to spectral and temporal features. J. Neurosci. 28, 8116–8123 (2008).

    CAS  PubMed  Google Scholar 

  75. 75.

    Morillon, B. et al. Neurophysiological origin of human brain asymmetry for speech and language. Proc. Natl Acad. Sci. USA 107, 18688–18693 (2010).

    CAS  PubMed  Google Scholar 

  76. 76.

    Peelle, J. E., Gross, J. & Davis, M. H. Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cereb. Cortex 23, 1378–1387 (2013).

    PubMed  Google Scholar 

  77. 77.

    Luo, H. & Poeppel, D. Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron 54, 1001–1010 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Morillon, B., Liégeois-Chauvel, C., Arnal, L. H., Bénar, C.-G. & Giraud, A.-L. Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study. Front. Psychol. 3, 248 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Giraud, A.-L. et al. Endogenous cortical rhythms determine cerebral specialization for speech perception and production. Neuron 56, 1127–1134 (2007).

    CAS  PubMed  Google Scholar 

  80. 80.

    Giraud, A.-L. & Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15, 511–517 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Herdener, M. et al. Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex 49, 2822–2833 (2013).

    PubMed  Google Scholar 

  82. 82.

    Barton, B., Venezia, J. H., Saberi, K., Hickok, G. & Brewer, A. A. Orthogonal acoustic dimensions define auditory field maps in human cortex. Proc. Natl Acad. Sci. USA 109, 20738–20743 (2012).

    CAS  PubMed  Google Scholar 

  83. 83.

    Joanisse, M. F. Sensitivity of human auditory cortex to rapid frequency modulation revealed by multivariate representational similarity analysis. Front. Neurosci. 8, 306 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Garofolo, J. S. et al. TIMIT acoustic-phonetic continuous speech corpus. (Linguistic Data Consortium, 1993).

  85. 85.

    Camacho, A. & Harris, J. G. A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 124, 1638–1652 (2008).

    PubMed  Google Scholar 

  86. 86.

    Moore, B. C. J. Hearing (Academic, 1995).

  87. 87.

    Griffin, D. & Jae, Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32, 236–243 (1984).

    Google Scholar 

  88. 88.

    Chi, T. & Shamma, S. NSL Matlab Toolbox (Neural Systems Lab, Maryland, 2005).

  89. 89.

    Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 2871–2875 (2015).

    CAS  PubMed  Google Scholar 

  90. 90.

    Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. Fieldtrip: open source software for advanced analysis of meg, eeg, and invasive electrophysiological data. Computational Intell. Neurosci. 2011, 1–9 (2010).

    Google Scholar 

  91. 91.

    Adachi, Y., Shimogawara, M., Higuchi, M., Haruta, Y. & Ochiai, M. Reduction of nonperiodical environmental magnetic noise in MEG measurement by continuously adjusted least squares method. IEEE Trans. Appl. Superconductivity 11, 669–672 (2001).

    Google Scholar 

  92. 92.

    de Cheveigné, A. & Simon, J. Z. Denoising based on time-shift PCA. J. Neurosci. Method 165, 297–305 (2007).

    Google Scholar 

  93. 93.

    Dale, A. M. et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000).

    CAS  PubMed  Google Scholar 

  94. 94.

    Yang, A. I. et al. Localization of dense intracranial electrode arrays using magnetic resonance imaging. NeuroImage 63, 157–165 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007).

    PubMed  Google Scholar 

  96. 96.

    Groppe, D. M. et al. iELVis: An open source MATLAB toolbox for localizing and visualizing human intracranial electrode data. J. Neurosci. Method 281, 40–48 (2017).

    CAS  Google Scholar 

  97. 97.

    Collingridge, D. S. A primer on quantitized data analysis and permutation testing. J. Mix. Methods Res. 7, 81–97 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH F32 DC011985 and Charles H. Revson Senior Fellowships in Biomedical Science 15–28 to A.F., by NIH 2R01DC05660 to D.P. and by NIMH R21 MH114166-01 to A.D.M. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We would like to thank I. T. Kim and N. Mei, who assisted in the setup and acquisition of psychophysical dichotic data, B. Mahmood and M. Hofstradter, who assisted in NYU ECoG data acquisition and setup, D. Groppe, who assisted in North Shore ECoG data acquisition and electrode reconstruction, and H. Wang, who provided electrode reconstruction at NYU.

Author information

Affiliations

Authors

Contributions

A.F. and D.P. designed the study and hypotheses, and wrote the manuscript. A.F. constructed the stimuli and filtering techniques and collected and analysed the data. A.D.M., O.D. and W.K.D. recruited clinical patients and performed clinical care.

Corresponding author

Correspondence to Adeen Flinker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Flinker, A., Doyle, W.K., Mehta, A.D. et al. Spectrotemporal modulation provides a unifying framework for auditory cortical asymmetries. Nat Hum Behav 3, 393–405 (2019). https://doi.org/10.1038/s41562-019-0548-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing