Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amount and time exert independent influences on intertemporal choice


Intertemporal choices involve trade-offs between the value of rewards and the delay before those rewards are experienced. Canonical intertemporal choice models such as hyperbolic discounting assume that reward amount and time until delivery are integrated within each option prior to comparison1,2. An alternative view posits that intertemporal choice reflects attribute-wise processes in which amount and time attributes are compared separately3,4,5,6. Here, we use multi-attribute drift diffusion modelling (DDM) to show that attribute-wise comparison represents the choice process better than option-wise comparison for intertemporal choice in a young adult population. We find that, while accumulation rates for amount and time information are uncorrelated, the difference between those rates predicts individual differences in patience. Moreover, patient individuals incorporate amount earlier than time into the decision process. Using eye tracking, we link these modelling results to attention, showing that patience results from a rapid, attribute-wise process that prioritizes amount over time information. Thus, we find converging evidence that distinct evaluation processes for amount and time determine intertemporal financial choices. Because intertemporal decisions in the lab have been linked to failures of patience ranging from insufficient saving to addiction7,8,9,10,11,12,13, understanding individual differences in the choice process is important for developing more effective interventions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Intertemporal choice task.
Figure 2: Attribute-wise versus option-wise DDM model comparison using the Bayesian information criterion (BIC).
Figure 3: Patience reflects the difference in drift slopes and latencies for amount and time.
Figure 4: Differences in drift slope between amount and time attributes are reflected in measures of attention.

Code availability

Analysis code is available on the Open Science Framework: and GitHub: Analysis code can also be found in supplementary software.

Data availability

Data that support the findings of this study are available on the Open Science Framework:


  1. 1.

    Samuelson, P. A. A note on measurement of utility. Rev. Econ. Stud. 4, 155–161 (1937).

    Google Scholar 

  2. 2.

    Ainslie, G. Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol. Bull. 82, 463–496 (1975).

    CAS  PubMed  Google Scholar 

  3. 3.

    Roelofsma, P. H. M. P. & Read, D. Intransitive intertemporal choice. J. Behav. Decis. Mak. 13, 161–177 (2000).

    Google Scholar 

  4. 4.

    Read, D., Frederick, S. & Scholten, M. DRIFT: an analysis of outcome framing in intertemporal choice. J. Exp. Psychol. Learn. Mem. Cogn. 39, 573–588 (2013).

    PubMed  Google Scholar 

  5. 5.

    Dai, J. & Busemeyer, J. R. A probabilistic, dynamic, and attribute-wise model of intertemporal choice. J. Exp. Psychol. Gen. 143, 1489–1514 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ericson, K. M., White, J. M., Laibson, D. & Cohen, J. D. Money earlier or later? Simple heuristics explain intertemporal choices better than delay discounting does. Psychol. Sci. 26, 826–833 (2015).

    PubMed  Google Scholar 

  7. 7.

    Story, G. W., Vlaev, I., Seymour, B., Darzi, A. & Dolan, R. J. Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective. Front. Behav. Neurosci. 8, 76 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Lempert, K. M. & Phelps, E. A. The malleability of intertemporal choice. Trends. Cogn. Sci. 20, 64–74 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Bickel, W. K., Koffarnus, M. N., Moody, L. & Wilson, A. G. The behavioral- and neuro-economic process of temporal discounting: a candidate behavioral marker of addiction. Neuropharmacology 76, 518–527 (2014).

    CAS  PubMed  Google Scholar 

  10. 10.

    Bulley, A. & Pepper, G. V. Cross-country relationships between life expectancy, intertemporal choice and age at first birth. Evol. Hum. Behav. 38, 652–658 (2017).

    Google Scholar 

  11. 11.

    Jarmolowicz, D. P. et al. Robust relation between temporal discounting rates and body mass. Appetite 78, 63–67 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Meier, S. & Sprenger, C. D. Time discounting predicts creditworthiness. Psychol. Sci. 23, 56–58 (2012).

    PubMed  Google Scholar 

  13. 13.

    Griskevicius, V. et al. When the economy falters, do people spend or save? Responses to resource scarcity depend on childhood environments. Psychol. Sci. 24, 197–205 (2013).

    PubMed  Google Scholar 

  14. 14.

    Thaler, R. H. Some empirical evidence on dynamic inconsistency. Econ. Lett. 8, 201–207 (1981).

    Google Scholar 

  15. 15.

    Mazur, J. E. in Quantitative analyses of behavior Vol. 5 (eds. Commons, M., et al.). Chapter 3 (Lawrence Erlbaum Associates, 1987).

  16. 16.

    Loewenstein, G. & Prelec, D. Anomalies in intertemporal choice: evidence and an interpretation. Q. J. Econ. 107, 573–597 (1992).

    Google Scholar 

  17. 17.

    Frederick, S., Loewenstein, G. & O’Donoghue, T. Time discounting and time preference: a critical review. J. Econ. Lit. 40, 351–401 (2008).

    Google Scholar 

  18. 18.

    Monterosso, J. R. & Luo, S. An argument against dual valuation system competition: cognitive capacities supporting future orientation mediate rather than compete with visceral motivations. J. Neurosci. Psychol. Econ. 3, 1–14 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Weber, E. et al. Asymmetric discounting in intertemporal choice. Psychol. Sci. 18, 516–523 (2007).

    CAS  PubMed  Google Scholar 

  21. 21.

    Ebert, J. & Prelec, D. The fragility of time: time-insensitivity and valuation of the near and far future. Manag. Sci 53, 1423–1438 (2007).

    Google Scholar 

  22. 22.

    Radu, P. T., Yi, R., Bickel, W. K., Gross, J. J. & McClure, S. M. A mechanism for reducing delay discounting by altering temporal attention. J. Exp. Anal. Behav. 96, 363–385 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Fassbender, C. et al. The decimal effect: behavioral and neural bases for a novel influence on intertemporal choice in healthy individuals and in ADHD. J. Cogn. Neurosci. 26, 2455–2468 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wulff, D. U. & van den Bos, W. Modeling choices in delay discounting. Psychol. Sci. 29, 1890–1894 (2017).

    PubMed  Google Scholar 

  25. 25.

    Rodriguez, C. A., Turner, B. M. & McClure, S. M. Intertemporal choice as discounted value accumulation. PLoS One (2014).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    White, C. N., Ratcliff, R., Vasey, M. W. & McKoon, G. Using diffusion models to understand clinical disorders. J. Math. Psychol. 54, 39–52 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Sullivan, N., Hutcherson, C., Harris, A. & Rangel, A. Dietary self-control is related to the speed with which attributes of healthfulness and tastiness are processed. Psychol. Sci. 26, 122–134 (2015).

    PubMed  Google Scholar 

  28. 28.

    van Maanen, L. et al. Neural correlates of trial-to-trial fluctuations in response caution. J. Neurosci. 31, 17488–17495 (2011).

    PubMed  Google Scholar 

  29. 29.

    Orquin, J. L. & Mueller Loose, S. Attention and choice: a review on eye movements in decision making. Acta Psychol. 144, 190–206 (2013).

    Google Scholar 

  30. 30.

    Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

    CAS  PubMed  Google Scholar 

  31. 31.

    Krajbich, I., Lu, D., Camerer, C. & Rangel, A. The attentional drift-diffusion model extends to simple purchasing decisions. Front. Psychol 3, 193 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Konovalov, A. & Krajbich, I. Gaze data reveal distinct choice processes underlying model-based and model-free reinforcement learning. Nat. Commun. 7, 12438 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Fisher, G. An attentional drift diffusion model over binary-attribute choice. Cognition 168, 34–45 (2017).

    PubMed  Google Scholar 

  34. 34.

    Glockner, A. & Herbold, A.-K. An eye-tracking study on information processing in risky decision: evidence for compensatory strategies based on automatic processes. J. Behav. Decis. Mak. 24, 71–98 (2011).

    Google Scholar 

  35. 35.

    Franco-Watkins, A. M., Mattson, R. E. & Jackson, M. D. Now or later? Attentional processing and intertemporal choice. J. Behav. Decis. Mak. 29, 206–217 (2016).

    Google Scholar 

  36. 36.

    Venkatraman, V., Payne, J. W. & Huettel, S. A. An overall probability of winning heuristic for complex risky decisions: choice and eye fixation evidence. Organ. Behav. Hum. Decis. Process. 125, 73–87 (2014).

    Google Scholar 

  37. 37.

    Reeck, C., Wall, D. & Johnson, E. J. Search predicts and changes patience in intertemporal choice. Proc. Natl Acad. Sci. USA 114, 11890–11895 (2017).

    CAS  PubMed  Google Scholar 

  38. 38.

    Payne, J. W. Task complexity and contingent processing in decision making: an information search and protocol analysis. Organ. Behav. Hum. Perform. 16, 366–387 (1976).

    Google Scholar 

  39. 39.

    Bruderer Enzler, H., Diekmann, A. & Meyer, R. Subjective discount rates in the general population and their predictive power for energy saving behavior. Energy Policy 65, 524–540 (2014).

    Google Scholar 

  40. 40.

    Chapman, G. B. Temporal discounting and utility for health and money. J. Exp. Psychol. Learn. Mem. Cogn. 22, 771–791 (1996).

    CAS  PubMed  Google Scholar 

  41. 41.

    Tsukayama, E. & Duckworth, A. L. Domain-specific temporal discounting and temptation. Judgm. Decis. Mak. 5, 72–82 (2010).

    Google Scholar 

  42. 42.

    Hardisty, D. J. & Weber, E. U. Discounting future green: money versus the environment. J. Exp. Psychol. Gen. 138, 329–340 (2009).

    PubMed  Google Scholar 

  43. 43.

    Jimura, K. et al. Domain independence and stability in young and older adults’ discounting of delayed rewards. Behav. Processes 87, 253–259 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Diederich, A. & Oswald, P. Sequential sampling model for multiattribute choice alternatives with random attention time and processing order. Front. Hum. Neurosci 8, 697 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Hoffman, J. E. & Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 57, 787–795 (1995).

    CAS  PubMed  Google Scholar 

  46. 46.

    Deubel, H. & Schneider, W. X. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res. 36, 1827–1837 (1996).

    CAS  PubMed  Google Scholar 

  47. 47.

    Rehder, B. & Hoffman, A. B. Eyetracking and selective attention in category learning. Cogn. Psychol. 51, 1–41 (2005).

    PubMed  Google Scholar 

  48. 48.

    Krajbich, I., Hare, T., Bartling, B., Morishima, Y. & Fehr, E. A common mechanism underlying food choice and social decisions. PLoS Comput. Biol. 11, e1004371 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Leong, Y. C., Radulescu, A., Daniel, R., DeWoskin, V. & Niv, Y. Dynamic interaction between reinforcement learning and attention in multidimensional environments. Neuron 93, 451–463 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Schulte-Mecklenbeck, M., Kühberger, A., Gagl, B. & Hutzler, F. Inducing thought processes: bringing process measures and cognitive processes closer together. J. Behav. Decis. Mak. 30, 1001–1013 (2017).

    Google Scholar 

  51. 51.

    Böckenholt, U. & Hynan, L. S. Caveats on a process‐tracing measure and a remedy. J. Behav. Decis. Mak 7, 103–117 (1994).

    Google Scholar 

  52. 52.

    Kwak, Y., Payne, J. W., Cohen, A. & Huettel, S. A. The rational adolescent: strategic information processing during decision making revealed by eye tracking. Cogn. Dev. 36, 20–30 (2015).

    PubMed  PubMed Central  Google Scholar 

  53. 53.

    Venkatraman, V., Payne, J. W., Bettman, J. R., Luce, M. F. & Huettel, S. A. Separate neural mechanisms underlie choices and strategic preferences in risky decision making. Neuron 62, 593–602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Gigerenzer, G., Czeslinski, J. & Martignon, L. in Decision Science and Technology (eds. Shanteau, J., Mellers, B. & Schum, D.) Chapter 6 (Springer, 1999).

  55. 55.

    Gigerenzer, G. & Gaissmaier, W. Heuristic decision making. Annu. Rev. Psychol. 62, 451–482 (2011).

    Google Scholar 

  56. 56.

    Wittmann, M. & Paulus, M. P. Decision making, impulsivity and time perception. Trends Cogn. Sci. 12, 7–12 (2008).

    PubMed  Google Scholar 

  57. 57.

    Zhao, C.-X. et al. The hidden opportunity cost of time effect on intertemporal choice. Front. Psychol 6, 311 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Mullett, T. L. & Stewart, N. Implications of visual attention phenomena for models of preferential choice. Decision 3, 231–253 (2016).

    PubMed  Google Scholar 

  59. 59.

    Laibson, D. Golden eggs and hyperbolic discounting. Q. J. Econ. 112, 443–477 (1997).

    Google Scholar 

  60. 60.

    McClure, S. M., Laibson, D., Loewenstein, G. & Cohen, J. D. Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004).

    CAS  PubMed  Google Scholar 

  61. 61.

    Andreoni, J., Kuhn, M. A. & Sprenger, C. Measuring time preferences: a comparison of experimental methods. J. Econ. Behav. Organ. 116, 451–464 (2015).

    Google Scholar 

  62. 62.

    Lim, S., Penrod, M. T., Ha, O., Bruce, J. M. & Bruce, A. S. Calorie labeling promotes dietary self-control by shifting the temporal dynamics of health- and taste-attribute integration in overweight individuals. Psychol. Sci. 29, 447–462 (2018).

    PubMed  Google Scholar 

  63. 63.

    Shimojo, S., Simion, C., Shimojo, E. & Scheier, C. Gaze bias both reflects and influences preference. Nat. Neurosci. 6, 1317–1322 (2003).

    CAS  PubMed  Google Scholar 

  64. 64.

    Tavares, G., Perona, P. & Rangel, A. The attentional drift diffusion model of simple perceptual decision-making. Front. Neurosci 11, 468 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Armel, K. C., Beaumel, A. & Rangel, A. Biasing simple choices by manipulating relative visual attention. Judgm. Decis. Mak. 3, 396–403 (2008).

    Google Scholar 

  66. 66.

    Kunar, M. A., Watson, D. G., Tsetsos, K. & Chater, N. The influence of attention on value integration. Atten. Percept. Psychophys. 79, 1615–1627 (2017).

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Pärnamets, P. et al. Biasing moral decisions by exploiting the dynamics of eye gaze. Proc. Natl Acad. Sci. USA 112, 4170–4175 (2015).

    PubMed  Google Scholar 

  68. 68.

    Schkade, D. A. & Kleinmuntz, D. N. Information displays and choice processes: differential effects of organization, form, and sequence. Organ. Behav. Hum. Decis. Process. 57, 319–337 (1994).

    Google Scholar 

  69. 69.

    Kleinmuntz, D. N. & Schkade, D. Information displays and decision processes. Psychol. Sci. 4, 221–227 (1993).

    Google Scholar 

  70. 70.

    Bettman, J. R. & Kakkar, P. Effects of information presentation format on consumer information acquisition strategies. J. Consum. Res. 3, 233–240 (1977).

    Google Scholar 

  71. 71.

    Johnson, E. J., Payne, J. W. & Bettman, J. R. Information displays and preference reversals. Organ. Behav. Hum. Decis. Process. 42, 1–21 (1988).

    Google Scholar 

  72. 72.

    Reutskaja, E., Nagel, R., Camerer, C. F. & Rangel, A. Search dynamics in consumer choice under time pressure: an eye-tracking study. Am. Econ. Rev. 101, 900–926 (2011).

    Google Scholar 

  73. 73.

    Jang, J. M. & Yoon, S. O. The effect of attribute-based and alternative-based processing on consumer choice in context. Mark. Lett. 27, 511–524 (2016).

    Google Scholar 

  74. 74.

    Schkade, D. A. & Johnson, E. J. Cognitive processes in preference reversals. Organ. Behav. Hum. Decis. Process. 44, 203–231 (1989).

    Google Scholar 

  75. 75.

    Lempert, K. M., Glimcher, P. W. & Phelps, E. A. Emotional arousal and discount rate in intertemporal choice are reference dependent. J. Exp. Psychol. Gen. 144, 366–373 (2015).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Krajbich, I., Bartling, B., Hare, T. & Fehr, E. Rethinking fast and slow based on a critique of reaction-time reverse inference. Nat. Commun. 6, 1–9 (2015).

    Google Scholar 

  77. 77.

    Bickel, W. K., Yi, R., Landes, R. D., Hill, P. F. & Baxter, C. Remember the future: working memory training decreases delay discounting among stimulant addicts. Biol. Psychiatry 69, 260–265 (2011).

    PubMed  Google Scholar 

  78. 78.

    Shamosh, N. A. et al. Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychol. Sci. 19, 904–911 (2008).

    PubMed  Google Scholar 

  79. 79.

    Bjork, J. M., Momenan, R. & Hommer, D. W. Delay discounting correlates with proportional lateral frontal cortex volumes. Biol. Psychiatry 65, 710–713 (2009).

    PubMed  Google Scholar 

  80. 80.

    Hare, T. A., Hakimi, S. & Rangel, A. Activity in dlPFC and its effective connectivity to vmPFC are associated with temporal discounting. Front. Neurosci 8, 50 (2014).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Lempert, K. M., Speer, M. E., Delgado, M. R. & Phelps, E. A. Positive autobiographical memory retrieval reduces temporal discounting. Soc. Cogn. Affect. Neurosci. 12, 1584–1593 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Hershfield, H. E. Future self-continuity: how conceptions of the future self transform intertemporal choice. Ann. N. Y. Acad. Sci. 1235, 30–43 (2011).

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Ersner-Hershfield, H., Garton, M. T., Ballard, K., Samanez-Larkin, G. R. & Knutson, B. Don’t stop thinking about tomorrow: individual differences in future self-continuity account for saving. Judgm. Decis. Mak. 4, 280–286 (2009).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Peters, J. & Büchel, C. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron 66, 138–148 (2010).

    CAS  PubMed  Google Scholar 

  85. 85.

    Zauberman, G., Kim, B. K., Malkoc, S. A. & Bettman, J. R. Discounting time and time discounting: subjective time perception and intertemporal preferences. J. Mark. Res. 46, 543–556 (2009).

    Google Scholar 

  86. 86.

    Read, D., Frederick, S., Orsel, B. & Rahman, J. Four score and seven years from now: the date/delay effect in temporal discounting. Manag. Sci. 51, 1326–1335 (2005).

    Google Scholar 

  87. 87.

    Reppert, T. R., Lempert, K. M., Glimcher, P. W. & Shadmehr, R. Modulation of saccade vigor during value-based decision making. J. Neurosci. 35, 15369–15378 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Coutlee, C. G., Politzer, C. S., Hoyle, R. H. & Huettel, S. A. An abbreviated impulsiveness scale constructed through confirmatory factor analysis of the Barratt Impulsiveness Scale Version 11. Arch. Sci. Psychol. 2, 1–12 (2014).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Andreoni, J. & Sprenger, C. Risk preferences are not time preferences. Am. Econ. Rev. 102, 3357–3376 (2012).

    Google Scholar 

  90. 90.

    Loewenstein, G. & Thaler, R. H. Anomalies: intertemporal choice. J. Econ. Perspect. 3, 181–193 (1989).

    Google Scholar 

  91. 91.

    Peters, J. & Büchel, C. The neural mechanisms of inter-temporal decision-making: understanding variability. Trends Cogn. Sci. 15, 227–239 (2011).

    PubMed  Google Scholar 

  92. 92.

    Milosavljevic, M., Malmaud, J. & Huth, A. The drift diffusion model can account for the accuracy and reaction time of value-based choices under high and low time pressure. Judgm. Decis. Mak. 5, 437–449 (2010).

    Google Scholar 

  93. 93.

    Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. Diffusion decision model: current issues and history. Trends Cogn. Sci. 20, 260–281 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. 94.

    Ratcliff, R. & McKoon, G. The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873–922 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Wiecki, T. V., Sofer, I. & Frank, M. J. HDDM: hierarchical Bayesian estimation of the drift-diffusion model in Python. Front. Neuroinform 7, 14 (2013).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Srivastava, V., Feng, S. F., Cohen, J. D., Leonard, N. E. & Shenhav, A. A martingale analysis of first passage times of time-dependent Wiener diffusion models. J. Math. Psychol. 77, 94–110 (2017).

    PubMed  Google Scholar 

  97. 97.

    Busemeyer, J. R. & Diederich, A. Survey of decision field theory. Math. Soc. Sci. 43, 345–370 (2002).

    Google Scholar 

  98. 98.

    MATLAB 2016a. (The MathWorks, Inc., 2016).

  99. 99.

    Wickham, H. ggplot2: Elegant graphics for Data Analysis. (Springer, 2009).

  100. 100.

    R Core Team. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017).

Download references


This research was supported by a grant from the National Endowment for Financial Education. D.R.A. was supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-1644868. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank K.Vo for help with fitting the hyperbolic discounting model. We thank C. Z. Chen and C. Chen for help with data collection. Support for computation came from resources provided by NIH S10-OD-021480.

Author information




D.R.A., R.E.K. and S.A.H. designed the experiment. D.R.A. analysed the data, with input from N.J.S. and S.A.H. N.J.S. provided code for the multi-attribute DDM analyses. D.R.A., N.J.S., R.E.K. and S.A.H. wrote the paper.

Corresponding author

Correspondence to Scott A. Huettel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–16, Supplementary Figures 1–16, and Supplementary Tables 1 and 2.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amasino, D.R., Sullivan, N.J., Kranton, R.E. et al. Amount and time exert independent influences on intertemporal choice. Nat Hum Behav 3, 383–392 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing