A problem in theory


The replication crisis facing the psychological sciences is widely regarded as rooted in methodological or statistical shortcomings. We argue that a large part of the problem is the lack of a cumulative theoretical framework or frameworks. Without an overarching theoretical framework that generates hypotheses across diverse domains, empirical programs spawn and grow from personal intuitions and culturally biased folk theories. By providing ways to develop clear predictions, including through the use of formal modelling, theoretical frameworks set expectations that determine whether a new finding is confirmatory, nicely integrating with existing lines of research, or surprising, and therefore requiring further replication and scrutiny. Such frameworks also prioritize certain research foci, motivate the use diverse empirical approaches and, often, provide a natural means to integrate across the sciences. Thus, overarching theoretical frameworks pave the way toward a more general theory of human behaviour. We illustrate one such a theoretical framework: dual inheritance theory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Graphs showing theoretical predictions and empirical data for the conformist transmission bias and the shape of the conformist curve with different numbers of choices.


  1. 1.

    Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).

    Google Scholar 

  2. 2.

    Henrich, J., Heine, S. J. & Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 33, 61–83, discussion 83–135. (2010).

  3. 3.

    Gilbert, D. T., King, G., Pettigrew, S. & Wilson, T. D. Comment on “Estimating the reproducibility of psychological science”. Science 351, 1037 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. https://doi.org/10.1038/s41562-016-0021 (2017).

    Article  Google Scholar 

  5. 5.

    Agafonova, N. et al. Measurement of the neutrino velocity with the OPERA detector in the CNGS beam. JHEP https://doi.org/10.1007/JHEP10(2012)093 (2012).

  6. 6.

    Festinger, L. A Theory of Cognitive Dissonance. Vol. 2 (Stanford University Press, Stanford, CA, USA, 1962).

    Google Scholar 

  7. 7.

    Solomon, S., Greenberg, J. & Pyszczynski, T. A terror management theory of social behavior: the psychological functions of self-esteem and cultural worldviews. Adv. Exp. Soc. Psychol. 24, 93–159 (1991).

    Google Scholar 

  8. 8.

    Bargh, J. A., Chen, M. & Burrows, L. Automaticity of social behavior: direct effects of trait construct and stereotype-activation on action. J. Pers. Soc. Psychol. 71, 230–244 (1996).

    CAS  PubMed  Google Scholar 

  9. 9.

    Doyen, S., Klein, O., Pichon, C.-L. & Cleeremans, A. Behavioral priming: it’s all in the mind, but whose mind? PLoS One 7, e29081, https://doi.org/10.1371/journal.pone.0029081 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Schwartz, B. & Kliban, K. The Paradox of Choice: Why More is Less. (Ecco, New York, 2004).

    Google Scholar 

  11. 11.

    Scheibehenne, B., Greifeneder, R. & Todd, P. M. Can there ever be too many options? A meta‐analytic review of choice overload. J. Consum. Res. 37, 409–425 (2010).

    Google Scholar 

  12. 12.

    Poincaré, H. Science and Hypothesis. (Science Press, New York, 1905).

    Google Scholar 

  13. 13.

    Henrich, J. et al. Markets, religion, community size, and the evolution of fairness and punishment. Science 327, 1480–1484 (2010).

    CAS  PubMed  Google Scholar 

  14. 14.

    Henrich, J. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter. (Princeton University Press, Princeton, NJ, USA, 2016).

    Google Scholar 

  15. 15.

    Dehaene, S. Reading in the Brain: The New Science of How We Read. (Penguin, New York, 2009).

    Google Scholar 

  16. 16.

    Fletcher, J. A. & Doebeli, M. A simple and general explanation for the evolution of altruism. Proc. R. Soc. Lond. B 276, 13–19 (2009).

    Google Scholar 

  17. 17.

    Shipley, B. Cause and Correlation in Biology: a User’s Guide to Path Analysis, Structural Equations and Causal Inference with R (Cambridge University Press, Cambridge, UK, 2016).

  18. 18.

    Darwin, C. On the Origins of Species by Means of Natural Selection. (Murray, London, 1859).

    Google Scholar 

  19. 19.

    Dytran. MSCsoftware.com http://www.mscsoftware.com/product/dytran (2004).

  20. 20.

    Chan, E. Quantitative Trading: How to Build Your Own Algorithmic Trading Business. (Wiley, Hoboken, NJ, USA, 2009).

    Google Scholar 

  21. 21.

    Liu, C. & Wechsler, H. Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11, 467–476 (2002).

    PubMed  Google Scholar 

  22. 22.

    Hastie, R. & Kameda, T. The robust beauty of majority rules in group decisions. Psychol. Rev. 112, 494–508 (2005).

    PubMed  Google Scholar 

  23. 23.

    Kendal, J., Giraldeau, L.-A. & Laland, K. The evolution of social learning rules: payoff-biased and frequency-dependent biased transmission. J. Theor. Biol. 260, 210–219 (2009).

    PubMed  Google Scholar 

  24. 24.

    Aoki, K. & Feldman, M. W. Evolution of learning strategies in temporally and spatially variable environments: a review of theory. Theor. Popul. Biol. 91, 3–19 (2014).

    PubMed  Google Scholar 

  25. 25.

    Boyd, R. & Richerson, P. J. Culture and the Evolutionary Process. (University of Chicago Press, Chicago, IL, USA, 1985).

    Google Scholar 

  26. 26.

    MacCoun, R. J. The burden of social proof: shared thresholds and social influence. Psychol. Rev. 119, 345–372 (2012).

    PubMed  Google Scholar 

  27. 27.

    Nowak, A., Szamrej, J. & Latané, B. From private attitude to public opinion: a dynamic theory of social impact. Psychol. Rev. 97, 362–376 (1990).

    Google Scholar 

  28. 28.

    Tanford, S. & Penrod, S. Computer modeling of influence in the jury: the role of the consistent juror. Soc. Psychol. Q. 46, 200–212 (1983).

    Google Scholar 

  29. 29.

    Tanford, S. & Penrod, S. Social influence model: a formal integration of research on majority and minority influence processes. Psychol. Bull. 95, 189–225 (1984).

    Google Scholar 

  30. 30.

    Smaldino, P. E., Calanchini, J. & Pickett, C. L. Theory development with agent-based models. Organ. Psychol. Rev. 5, 300–317 (2015).

    Google Scholar 

  31. 31.

    Murphy, S. C. et al. The role of overconfidence in romantic desirability and competition. Pers. Soc. Psychol. Bull. 41, 1036–1052 (2015).

    PubMed  Google Scholar 

  32. 32.

    Hamilton, W. D. The genetical evolution of social behaviour. II. J. Theor. Biol. 7, 17–52 (1964).

    CAS  PubMed  Google Scholar 

  33. 33.

    Traulsen, A. Mathematics of kin- and group-selection: formally equivalent? Evolution 64, 316–323 (2010).

    PubMed  Google Scholar 

  34. 34.

    Birch, J. Hamilton’s rule and its discontents. Br. J. Philos. Sci. 65, 381–411 (2013).

    Google Scholar 

  35. 35.

    Nowak, M. A., McAvoy, A., Allen, B. & Wilson, E. O. The general form of Hamilton’s rule makes no predictions and cannot be tested empirically. Proc. Natl Acad. Sci. USA 114, 5665–5670 (2017).

    CAS  PubMed  Google Scholar 

  36. 36.

    Norenzayan, A. et al. The cultural evolution of prosocial religions. Behav. Brain Sci. 39, e1 (2016).

    PubMed  Google Scholar 

  37. 37.

    Bidgood, J. Sister Frances Ann Carr, One of the Last Three Shakers, Dies at 89. The New York Times https://www.nytimes.com/2017/01/04/us/sister-frances-ann-carr-one-of-the-last-three-shakers-dies-at-89.html (2017).

  38. 38.

    Laland, K. N., Sterelny, K., Odling-Smee, J., Hoppitt, W. & Uller, T. Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science 334, 1512–1516 (2011).

    CAS  PubMed  Google Scholar 

  39. 39.

    Laland, K. N. Darwin's Unfinished Symphony: How Culture Made the Human Mind. (Princeton University Press, Princeton, NJ, USA, 2017).

    Google Scholar 

  40. 40.

    Wingfield, J. C., Lynn, S. & Soma, K. K. Avoiding the ‘costs’ of testosterone: ecological bases of hormone-behavior interactions. Brain Behav. Evol. 57, 239–251 (2001).

    CAS  PubMed  Google Scholar 

  41. 41.

    Gabi, M. et al. No relative expansion of the number of prefrontal neurons in primate and human evolution. Proc. Natl Acad. Sci. USA 113, 9617–9622 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Nelson, L. D., Simmons, J. & Simonsohn, U. Psychology’s renaissance. Annu. Rev. Psychol. 69, 511–534 (2018).

    PubMed  Google Scholar 

  43. 43.

    Laland, K. N. et al. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc. Biol. Sci. 282, 20151019 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: a Quantitative Approach. (Princeton University Press, Princeton, NJ, USA, 1981).

    Google Scholar 

  45. 45.

    Boyd, R. A Different Kind of Animal: How Culture Transformed Our Species. (Princeton University Press, Princeton, NJ, USA, 2017).

    Google Scholar 

  46. 46.

    Campbell, D. T. On the conflicts between biological and social evolution and between psychology and moral tradition. Am. Psychol. 30, 1103–1126 (1975).

    Google Scholar 

  47. 47.

    Campbell, D.T. Variation and selective retention in socio-cultural evolution. in Social Change in Developing Areas (eds. Barringer, H.R., Blanksten, G.I. & Mack, R.W.) (Schenkman, New York, 1965).

  48. 48.

    Campbell, D. T. Blind variation and selective retention in creative thought as in other knowledge processes. Psychol. Rev. 67, 380–400 (1960).

    CAS  PubMed  Google Scholar 

  49. 49.

    Muthukrishna, M. et al. Beyond WEIRD psychology: measuring and mapping scales of cultural and psychological distance. SSRN https://ssrn.com/abstract=3259613 (2018).

  50. 50.

    Lumsden, C. J. & Wilson, E. O. Genes, Mind, and Culture: The Coevolutionary Process. (Harvard University Press, Boston, 1981).

    Google Scholar 

  51. 51.

    Pulliam, H. R. & Dunford, C. Programmed to Learn: an Essay on the Evolution of Culture. (Columbia University Press, New York, 1980).

    Google Scholar 

  52. 52.

    Richerson, P.J., Bettinger, R.L. & Boyd, R. Evolution on a restless planet: were environmental variability and environmental change major drivers of human evolution. Handbook of evolution, Vol. 2: The Evolution of Living Systems (Including Hominids) (eds. Wuketits, F.M. and Ayala, F.J.) 223–242 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005).

  53. 53.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693, https://doi.org/10.1126/science.1059412 (2001).

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Chudek, M., Muthukrishna, M. & Henrich, J. Environmental variability and environmental change major drivers of human evolution. in Handbook of evolution, Vol. 2: The Evolution of Living Systems (Including Hominids) (eds. Wuketits, F.M. and Ayala, F.J.) Ch. 30 (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015).

  55. 55.

    Asch, S. E. Effects of group pressure upon the modification and distortion of judgment. in Groups, Leadership and Men (ed. Guetzkow, H.) (Carnegie Press, Pittsburgh, PA, USA, 1951).

  56. 56.

    Asch, S. E. Group forces in the modification and distortion of judgments. in Social Psychology (ed. Asch, S. E.) 450–501 (Prentice-Hall, Englewood Cliffs, NJ, USA, 1952).

  57. 57.

    Asch, S. E. Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychol. Monogr. 70, 1–70 (1956).

    Google Scholar 

  58. 58.

    Cialdini, R. B. & Goldstein, N. J. Social influence: compliance and conformity. Annu. Rev. Psychol. 55, 591–621 (2004).

    PubMed  Google Scholar 

  59. 59.

    Bond, R. & Smith, P. B. Culture and conformity: a meta-analysis of studies using Asch’s (1952b, 1956) line judgment task. Psychol. Bull. 119, 111–137 10 (1996).

    Google Scholar 

  60. 60.

    Muthukrishna, M., Morgan, T. J. H. & Henrich, J. The when and who of social learning and conformist transmission. Evol. Hum. Behav. 37, 10–20 (2016).

    Google Scholar 

  61. 61.

    Morgan, T. J., Rendell, L. E., Ehn, M., Hoppitt, W. & Laland, K. N. The evolutionary basis of human social learning. Proc. Biol. Sci. 279, 653–662 (2012).

    CAS  PubMed  Google Scholar 

  62. 62.

    Efferson, C., Lalive, R., Richerson, P. J., McElreath, R. & Lubell, M. Conformists and mavericks: the empirics of frequency-dependent cultural transmission. Evol. Hum. Behav. 29, 56–64 (2008).

    Google Scholar 

  63. 63.

    Nakahashi, W., Wakano, J. Y. & Henrich, J. Adaptive social learning strategies in temporally and spatially varying environments : how temporal vs. spatial variation, number of cultural traits, and costs of learning influence the evolution of conformist-biased transmission, payoff-biased transmission, and individual learning. Hum. Nat. 23, 386–418 (2012).

    PubMed  Google Scholar 

  64. 64.

    Persky, J. Retrospectives: the ethology of Homo economicus. J. Econ. Perspect. 9, 221–231 (1995).

    Google Scholar 

  65. 65.

    Henrich, J. et al. In search of Homo economicus: behavioral experiments in 15 small-scale societies. Am. Econ. Rev. 91, 73–78 (2001).

    Google Scholar 

  66. 66.

    Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

    Google Scholar 

  67. 67.

    Gintis, H. Beyond Homo economicus: evidence from experimental economics. Ecol. Econ. 35, 311–322 (2000).

    Google Scholar 

  68. 68.

    Thaler, R. H. From homo economicus to homo sapiens. J. Econ. Perspect. 14, 133–141 (2000).

    Google Scholar 

  69. 69.

    Jensen, K., Call, J. & Tomasello, M. Chimpanzees are rational maximizers in an ultimatum game. Science 318, 107–109 (2007).

    CAS  PubMed  Google Scholar 

  70. 70.

    Angrist, J. D. & Pischke, J.-S. The credibility revolution in empirical economics: How better research design is taking the con out of econometrics. J. Econ. Perspect. 24, 3–30 (2010).

    Google Scholar 

  71. 71.

    Camerer, C. F. et al. Evaluating replicability of laboratory experiments in economics. Science 351, 1433–1436 (2016).

    CAS  PubMed  Google Scholar 

  72. 72.

    Besley, T. & Persson, T. Democratic values and institutions. American Economic Review https://www.aeaweb.org/articles?id=10.1257/aeri.20180248&&from=f (American Economic Association, Pittsburgh, PA, USA, 2019).

  73. 73.

    Francois, P. & Zabojnik, J. Trust, social capital, and economic development. J. Eur. Econ. Assoc. 3, 51–94 (2005).

    Google Scholar 

  74. 74.

    Bear, A. & Rand, D. G. Intuition, deliberation, and the evolution of cooperation. Proc. Natl Acad. Sci. USA 113, 936–941 (2016).

    CAS  PubMed  Google Scholar 

  75. 75.

    Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001).

    PubMed  Google Scholar 

  76. 76.

    Heeger, D. J. Theory of cortical function. Proc. Natl Acad. Sci. USA 114, 1773–1782 (2017).

    CAS  PubMed  Google Scholar 

  77. 77.

    Dayan, P. & Niv, Y. Reinforcement learning: the good, the bad and the ugly. Curr. Opin. Neurobiol. 18, 185–196 (2008).

    CAS  PubMed  Google Scholar 

  78. 78.

    Griffiths, T. L., Kemp, C. & Tenenbaum, J. B. in The Cambridge Handbook of Computational Psychology (ed. Sun, R.) 59–100 (Cambridge Univpersity Press, Cambridge, UK, 2008).

  79. 79.

    Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. The economics of reproducibility in preclinical research. PLoS Biol. 13, e1002165 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Davis, R. et al. Reproducibility Project: cancer biology. eLife https://elifesciences.org/collections/9b1e83d1/reproducibility-project-cancer-biology (2018).

  81. 81.

    Lea, A. J., Tung, J., Archie, E. A. & Alberts, S. C. Developmental plasticity: bridging research in evolution and human health. Evol. Med. Public Health 2017, 162–175 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Wells, J. C. K., Nesse, R. M., Sear, R., Johnstone, R. A. & Stearns, S. C. Evolutionary public health: introducing the concept. Lancet 390, 500–509 (2017).

    PubMed  Google Scholar 

  83. 83.

    Gluckman, P., Beedle, A., Buklijas, T., Low, F. & Hanson, M. Principles of Evolutionary Medicine. (Oxford University Press, Oxford, UK, 2016).

    Google Scholar 

  84. 84.

    Stearns, S. C., Nesse, R. M., Govindaraju, D. R. & Ellison, P. T. Evolution in health and medicine Sackler colloquium: evolutionary perspectives on health and medicine. Proc. Natl Acad. Sci. USA 107(Suppl 1), 1691–1695 (2010).

    CAS  PubMed  Google Scholar 

  85. 85.

    Nesse, R. M. et al. Evolution in health and medicine Sackler colloquium: making evolutionary biology a basic science for medicine. Proc. Natl Acad. Sci. USA 107(Suppl 1), 1800–1807 (2010).

    CAS  PubMed  Google Scholar 

  86. 86.

    Kerr, N. L. HARKing: hypothesizing after the results are known. Pers. Soc. Psychol. Rev. 2, 196–217 (1998).

    CAS  PubMed  Google Scholar 

  87. 87.

    Mischel, W. The toothbrush problem. APS Observer 21 (2009).

  88. 88.

    Han, S. et al. A cultural neuroscience approach to the biosocial nature of the human brain. Annu. Rev. Psychol. 64, 335–359 (2013).

    PubMed  Google Scholar 

  89. 89.

    Bolger, D. J., Perfetti, C. A. & Schneider, W. Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Hum. Brain Mapp. 25, 92–104 (2005).

    PubMed  Google Scholar 

  90. 90.

    Tan, L. H., Laird, A. R., Li, K. & Fox, P. T. Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Hum. Brain Mapp. 25, 83–91 (2005).

    PubMed  Google Scholar 

  91. 91.

    Kobayashi, C., Glover, G. H. & Temple, E. Cultural and linguistic influence on neural bases of ‘theory of mind’: an fMRI study with Japanese bilinguals. Brain Lang. 98, 210–220 (2006).

    PubMed  Google Scholar 

  92. 92.

    LeWinn, K. Z., Sheridan, M. A., Keyes, K. M., Hamilton, A. & McLaughlin, K. A. Sample composition alters associations between age and brain structure. Nat. Commun. 8, 874 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Coan, J. A., Schaefer, H. S. & Davidson, R. J. Lending a hand: social regulation of the neural response to threat. Psychol. Sci. 17, 1032–1039 (2006).

    PubMed  Google Scholar 

  94. 94.

    Coan, J. A. et al. Relationship status and perceived support in the social regulation of neural responses to threat. Soc. Cogn. Affect. Neurosci. 12, 1574–1583 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. 95.

    Savalei, V. & Dunn, E. Is the call to abandon P-values the red herring of the replicability crisis? Front. Psychol. 6, 245 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. 96.

    Trotta, R. Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71–104 (2008).

    CAS  Google Scholar 

  97. 97.

    Nielsen, M., Haun, D., Kärtner, J. & Legare, C. H. The persistent sampling bias in developmental psychology: a call to action. J. Exp. Child Psychol. 162, 31–38 (2017).

    PubMed  Google Scholar 

  98. 98.

    Talhelm, T. et al. Large-scale psychological differences within China explained by rice versus wheat agriculture. Science 344, 603–608 (2014).

    CAS  PubMed  Google Scholar 

  99. 99.

    Dobzhansky, T. Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35, 125–129 (1973).

    Google Scholar 

  100. 100.

    Wilson, M. & Daly, M. Competitiveness, risk taking, and violence: the young male syndrome. Ethol. Sociobiol. 6, 59–73 (1985).

    Google Scholar 

  101. 101.

    Daly, M. & Wilson, M. Homicide. (Transaction Publishers, London, 1988).

    Google Scholar 

  102. 102.

    Richerson, P. J. & Boyd, R. Not by Genes Alone: How Culture Transformed Human Evolution. (University of Chicago Press, Chicago, IL, USA, 2005).

    Google Scholar 

  103. 103.

    Barkow, J. H., Cosmides, L. & Tooby, J. The Adapted Mind: Evolutionary Psychology and the Generation of Culture. (Oxford University Press, Oxford, UK, 1992).

    Google Scholar 

  104. 104.

    Cosmides, L. & Tooby, J. Evolutionary psychology: new perspectives on cognition and motivation. Annu. Rev. Psychol. 64, 201–229 (2013).

    PubMed  Google Scholar 

  105. 105.

    Confer, J. C. et al. Evolutionary psychology. Controversies, questions, prospects, and limitations. Am. Psychol. 65, 110–126 (2010).

    PubMed  Google Scholar 

  106. 106.

    Fincher, C. L., Thornhill, R., Murray, D. R. & Schaller, M. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism. Proc. Biol. Sci. 275, 1279–1285 (2008).

    PubMed  PubMed Central  Google Scholar 

  107. 107.

    Hruschka, D. et al. Impartial institutions, pathogen stress and the expanding social network. Hum. Nat. 25, 567–579 (2014).

    PubMed  Google Scholar 

  108. 108.

    Laland, K. N., Odling-Smee, J. & Myles, S. How culture shaped the human genome: bringing genetics and the human sciences together. Nat. Rev. Genet. 11, 137–148 (2010).

    CAS  PubMed  Google Scholar 

  109. 109.

    Buss, D. M. The Handbook of Evolutionary Psychology. (Wiley, Hoboken, NJ, USA, 2015).

    Google Scholar 

  110. 110.

    Hoppitt, W. & Laland, K. N. Social Learning: An Introduction to Mechanisms, Methods, and Models. (Princeton University Press, Princeton, NJ, USA, 2013).

    Google Scholar 

  111. 111.

    Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108(Suppl 2), 10918–10925 (2011).

    CAS  PubMed  Google Scholar 

  112. 112.

    Nielsen, M., Subiaul, F., Galef, B., Zentall, T. & Whiten, A. Social learning in humans and nonhuman animals: theoretical and empirical dissections. J. Comp. Psychol. 126, 109–113 (2012).

    PubMed  Google Scholar 

  113. 113.

    Whiten, A., McGuigan, N., Marshall-Pescini, S. & Hopper, L. M. Emulation, imitation, over-imitation and the scope of culture for child and chimpanzee. Phil. Trans. R. Soc. Lond. B 364, 2417–2428 (2009).

    Google Scholar 

  114. 114.

    Claidière, N. & Whiten, A. Integrating the study of conformity and culture in humans and nonhuman animals. Psychol. Bull. 138, 126–145 (2012).

    PubMed  Google Scholar 

  115. 115.

    Chudek, M. & Henrich, J. Culture-gene coevolution, norm-psychology and the emergence of human prosociality. Trends Cogn. Sci. 15, 218–226 (2011).

    PubMed  Google Scholar 

  116. 116.

    Schmidt, M. F., Rakoczy, H. & Tomasello, M. Young children enforce social norms selectively depending on the violator’s group affiliation. Cognition 124, 325–333 (2012).

    PubMed  Google Scholar 

  117. 117.

    Brown, G. R., Dickins, T. E., Sear, R. & Laland, K. N. Evolutionary accounts of human behavioural diversity. Phil. Trans. R. Soc. Lond. B 366, 313–324 (2011).

    Google Scholar 

  118. 118.

    McElreath, R., Boyd, R. & Richerson, P. J. Shared norms and the evolution of ethnic markers. Curr. Anthropol. 44, 122–130 (2003).

    Google Scholar 

  119. 119.

    Efferson, C., Lalive, R. & Fehr, E. The coevolution of cultural groups and ingroup favoritism. Science 321, 1844–1849 (2008).

    CAS  PubMed  Google Scholar 

  120. 120.

    Moya, C. Evolved priors for ethnolinguistic categorization: a case study from the Quechua-Aymara boundary in the Peruvian Altiplano. Evol. Hum. Behav. 34, 265–272 (2013).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Atran, S. & Henrich, J. The evolution of religion: how cognitive by-products, adaptive learning heuristics, ritual displays, and group competition generate deep commitments to prosocial religion. Biol. Theory 5, 18–30 (2010).

    Google Scholar 

  122. 122.

    Bell, A. V., Richerson, P. J. & McElreath, R. Culture rather than genes provides greater scope for the evolution of large-scale human prosociality. Proc. Natl Acad. Sci. USA 106, 17671–17674 (2009).

    CAS  PubMed  Google Scholar 

  123. 123.

    Norenzayan, A. & Shariff, A. F. The origin and evolution of religious prosociality. Science 322, 58–62 (2008).

    CAS  PubMed  Google Scholar 

  124. 124.

    Richerson, P. et al. Cultural group selection plays an essential role in explaining human cooperation: A sketch of the evidence. Behav. Brain Sci. 39, e30 (2016).

    PubMed  Google Scholar 

  125. 125.

    Tooby, J., Cosmides, L., Sell, A., Lieberman, D. & Sznycer, D. in Handbook of Approach and Avoidance Motivation Vol. 251 (Lawrence Erlbaum Mahwah, NJ, USA, 2008).

  126. 126.

    von Hippel, W. & Trivers, R. The evolution and psychology of self-deception. Behav. Brain Sci. 34, 1–16, discussion 16–56 (2011).

    Google Scholar 

  127. 127.

    Buss, D. M. How can evolutionary psychology successfully explain personality and individual differences? Perspect. Psychol. Sci. 4, 359–366 (2009).

    PubMed  Google Scholar 

  128. 128.

    Rand, D. G., Greene, J. D. & Nowak, M. A. Spontaneous giving and calculated greed. Nature 489, 427–430 (2012).

    CAS  PubMed  Google Scholar 

  129. 129.

    Whiten, A. & Erdal, D. The human socio-cognitive niche and its evolutionary origins. Phil. Trans. R. Soc. Lond. B 367, 2119–2129 (2012).

    Google Scholar 

  130. 130.

    Pinker, S. The Language Instinct: the New Science of Language and Mind. (Penguin, London, UK, 1995).

    Google Scholar 

  131. 131.

    Muthukrishna, M. & Henrich, J. Innovation in the collective brain. Phil. Trans. R. Soc. Lond. B 371, 20150192 (2016).

    Google Scholar 

  132. 132.

    Fox, K. C. R., Muthukrishna, M. & Shultz, S. The social and cultural roots of whale and dolphin brains. Nat. Ecol. Evol. 1, 1699–1705 (2017).

    PubMed  Google Scholar 

  133. 133.

    Laland, K. N., Atton, N. & Webster, M. M. From fish to fashion: experimental and theoretical insights into the evolution of culture. Phil. Trans. R. Soc. Lond. B 366, 958–968 (2011).

    CAS  Google Scholar 

  134. 134.

    Muthukrishna, M., Doebeli, M., Chudek, M. & Henrich, J. The cultural brain hypothesis: how culture drives brain expansion, sociality, and life history. PLOS Comput. Biol. 14, e1006504 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. 135.

    Lipschuetz, M. et al. A large head circumference is more strongly associated with unplanned cesarean or instrumental delivery and neonatal complications than high birthweight. Am. J. Obstet. Gynecol. 213, 833.e1–833.e12 (2015).

    Google Scholar 

  136. 136.

    Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Ravelli, G.-P., Stein, Z. A. & Susser, M. W. Obesity in young men after famine exposure in utero and early infancy. N. Engl. J. Med. 295, 349–353 (1976).

    CAS  PubMed  Google Scholar 

  138. 138.

    St Clair, D. et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. J. Am. Med. Assoc. 294, 557–562 (2005).

    Google Scholar 

  139. 139.

    Muthukrishna, M., Francois, P., Pourahmadi, S. & Henrich, J. Corrupting cooperation and how anti-corruption strategies may backfire. Nat. Hum. Behav. https://doi.org/10.1038/s41562-017-0138 (2017).

  140. 140.

    Muthukrishna, M. Corruption, cooperation, and the evolution of prosocial institutions. SSRN https://doi.org/10.2139/ssrn.3082315 (2017).

  141. 141.

    Henrich, J. Cultural group selection, coevolutionary processes and large-scale cooperation. J. Econ. Behav. Organ. 53, 3–35 (2004).

    Google Scholar 

  142. 142.

    Henrich, J., Boyd, R. & Richerson, P. J. The puzzle of monogamous marriage. Phil. Trans. R. Soc. Lond. B 367, 657–669 (2012).

    Google Scholar 

  143. 143.

    Slingerland, E. & Sullivan, B. Durkheim with data: the database of religious history. J. Am. Acad. Relig. 85, 312–347 (2017).

    Google Scholar 

  144. 144.

    Sullivan, B., Muthukrishna, M., Tappenden, F. S. & Slingerland, E. Exploring the challenges and potentialities of the database of religious history for cognitive historiography. J. Cogn. Historiography 3, 12–31 (2016).

    Google Scholar 

Download references


We thank T. Besley, N. Griffiths, S. Heine, K. Jensen, R. Kreuzbauer, K. Laland, D. Muthukrishna, S. Salgado, and J. Sheehy-Skeffington for their helpful comments.

Author information



Corresponding author

Correspondence to Michael Muthukrishna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muthukrishna, M., Henrich, J. A problem in theory. Nat Hum Behav 3, 221–229 (2019). https://doi.org/10.1038/s41562-018-0522-1

Download citation

Further reading