Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The minute-scale dynamics of online emotions reveal the effects of affect labeling


Putting one’s feelings into words (also called affect labeling) can attenuate positive and negative emotions. Here, we track the evolution of specific emotions for 74,487 Twitter users by analysing the emotional content of their tweets before and after they explicitly report experiencing a positive or negative emotion. Our results describe the evolution of emotions and their expression at the temporal resolution of one minute. The expression of positive emotions is preceded by a short, steep increase in positive valence and followed by short decay to normal levels. Negative emotions, however, build up more slowly and are followed by a sharp reversal to previous levels, consistent with previous studies demonstrating the attenuating effects of affect labeling. We estimate that positive and negative emotions last approximately 1.25 and 1.5 h, respectively, from onset to evanescence. A separate analysis for male and female individuals suggests the potential for gender-specific differences in emotional dynamics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measuring changing valence levels from language before and after affect labeling.
Fig. 2: Time series of observed valence values across all individuals.
Fig. 3: Curve-fitting results of the smoothed mean valence values.
Fig. 4: Time series of observed valence CIs versus null-model CIs at 10 min increments.
Fig. 5: Robustness analysis.
Fig. 6: Gender differentiated time series of mean valence values.
Fig. 7: Regression discontinuity analysis of male and female time series in negative and positive affect labeling groups.

Data availability

The Twitter content data that support the findings of this study are publicly available from Twitter, but cannot be distributed by the authors. The authors provide the Twitter identification codes of all tweets used in this analysis to allow for retrieval of their content from the Twitter application programming interface. All other data are available from the authors upon reasonable request.


  1. Shariff, A. F. & Tracy, J. L. What are emotion expressions for? Curr. Dir. Psychol. Sci. 20, 395–399 (2011).

    Article  Google Scholar 

  2. Torre, J. B. & Lieberman., M. D. Putting feelings into words: affect labeling as implicit emotion regulation. Emot. Rev. 10, 116–124 (2018).

    Article  Google Scholar 

  3. Lieberman, M. D., Inagaki, T. K., Tabibnia, G. & Crockett, M. J. Subjective responses to emotional stimuli during labeling, reappraisal, and distraction. Emotion 11, 468–480 (2011).

    Article  Google Scholar 

  4. Constantinou, E., Van Den Houte, M., Bogaerts, K., Van Diest, I. & Van den Bergh, O. Can words heal? Using affect labeling to reduce the effects of unpleasant cues on symptom reporting. Front. Psychol. 5, 807 (2014).

    Article  Google Scholar 

  5. Taylor, S. F., Phan, K. L., Decker, L. R. & Liberzon, I. Subjective rating of emotionally salient stimuli modulates neural activity. NeuroImage 18, 650–659 (2003).

    Article  Google Scholar 

  6. Thomassin, K., Morelen, D. & Suveg, C. Motion reporting using electronic diaries reduces anxiety symptoms in girls with emotion dysregulation. J. Contemp. Psychother. 42, 207–213 (2012).

    Article  Google Scholar 

  7. Kircanski, K., Lieberman, M. D. & Craske, M. G. Feelings into words. Psychol. Sci. 23, 1086–1091 (2012).

    Article  Google Scholar 

  8. Niles, A. N., Craske, M. G., Lieberman, M. D. & Hur., C. Affect labeling enhances exposure effectiveness for public speaking anxiety. Behav. Res. Ther. 68, 27–36 (2015).

    Article  Google Scholar 

  9. Niles, A. N., Haltom, K. E. B., Lieberman, M. D., Hur, C. & Stanton, A. L. Writing content predicts benefit from written expressive disclosure: evidence for repeated exposure and self-affirmation. Cogn. Emot. 30, 258–274 (2016).

    Article  Google Scholar 

  10. Lieberman, M. D. et al. Putting feelings into words: affect labeling disrupts amygdala activity to affective stimuli. Psychol. Sci. 18, 421–428 (2007).

    Article  Google Scholar 

  11. Mauss, I. B. & Robinson, M. D. Measures of emotion: a review. Cogn. Emot. 23, 209–237 (2009).

    Article  Google Scholar 

  12. Kahneman, D. & Krueger, A. B. Developments in the measurement of subjective well-being. J. Econ. Perspect. 20, 3–24 (2006).

    Article  Google Scholar 

  13. Probst, T., Pryss, R., Langguth, B. & Schlee, W.Emotion dynamics and tinnitus: daily life data from the “trackyourtinnitus” application.Sci. Rep. 6, 31166 (2016).

    Article  CAS  Google Scholar 

  14. Phan, K. L., Wager, T., Taylor, S. F. & Liberzon, I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and FMRI. NeuroImage 16, 331–348 (2002).

    Article  Google Scholar 

  15. Ochsner, K. N., Bunge, S. A., Gross, J. J. & Gabrieli., J. D. E. Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J. Cogn. Neurosci. 14, 1215–1229 (2002).

    Article  Google Scholar 

  16. Fossati, P. et al. In search of the emotional self: an FMRI study using positive and negative emotional words. Am. J. Psychiatry 160, 1938–1945 (2003).

    Article  Google Scholar 

  17. Andreassi, J. L. Psychophysiology: Human Behavior and Physiological Response (Psychology Press, London, 2013).

  18. Nummenmaa, L., Glerean, E., Hari, R. & Hietanen, J. K. Bodily maps of emotions. Proc. Natl Acad. Sci. USA 111, 646–651 (2014).

    Article  CAS  Google Scholar 

  19. McRae, K., Ochsner, K. N., Mauss, I. B., Gabrieli, J. J. D. & Gross, J. J. Gender differences in emotion regulation: an FMRI study of cognitive reappraisal. Group Process. Intergroup Relat. 11, 143–162 (2008).

    Article  Google Scholar 

  20. Koelsch, S., Fritz, T., Müller, K. & Friederici, A. D. Investigating emotion with music: an FMRI study. Hum. Brain Mapp. 27, 239–250 (2006).

    Article  Google Scholar 

  21. Prasad, D. K., Liu, S., Chen, S.-H. A. & Quek, C. Sentiment analysis using EEG activities for suicidology. Expert Syst. Appl. 103, 206–217 (2018).

    Article  Google Scholar 

  22. Pennebaker, J. W. Emotion, Disclosure and Health (American Psychological Association Books, Washington DC, 1995).

  23. Kennedy-Moore, E. & Watson, J. C. How and when does emotional expression help? Rev. Gen. Psychol. 5, 187–212 (2001).

    Article  Google Scholar 

  24. Ford, B. Q., Lam, P., John, O. P. & Mauss, I. B. The psychological health benefits of accepting negative emotions and thoughts: aboratory, diary, and longitudinal evidence. J. Pers. Soc. Psychol. (2017).

  25. Thistlethwaite, D. L. & Campbell, D. T. Regression-discontinuity analysis: an alternative to the ex post facto experiment. J. Educ. Psychol. 51, 309–317 (1960).

    Article  Google Scholar 

  26. Beasley, A. & Mason, W. Emotional states vs. emotional words in social media. In Proc. ACM Web Science Conference 31 (ACM, 2015).

  27. Ziemer, K. S. & Korkmaz, G. Using text to predict psychological and physical health: a comparison of human raters and computerized text analysis. Comput. Hum. Behav. 76, 122–127 (2017).

    Article  Google Scholar 

  28. Cowen, A. S. & Keltner, D. Self-report captures 27 distinct categories of emotion bridged by continuous gradients. Proc. Natl Acad. Sci. USA 114, E7900–E7909 (2017).

    Article  CAS  Google Scholar 

  29. Bollen, J., Mao, H. & Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2, 1–8 (2011).

    Article  Google Scholar 

  30. Hutto, C. J. & Gilbert, E. VADER: a parsimonious rule-based model for sentiment analysis of social media text. In Proc. Eighth International AAAI Conference on Weblogs and Social Media 216–225 (AAAI, 2014).

  31. Bollen, J., Mao, H. & Pepe, A. Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In Proc. Fifth International AAAI Conference on Weblogs and Social Media 450–453 (AAAI, 2011).

  32. Yang, C. & Srinivasan, P. Life satisfaction and the pursuit of happiness on twitter. PLoS ONE 11, 1–30 (2016).

    Google Scholar 

  33. Warriner, A. B., Kuperman, V. & Brysbaert, M. Norms of valence, arousal, and dominance for 13,915 English lemmas. Behav. Res. Methods 45, 1191–1207 (2013).

    Article  Google Scholar 

  34. Darwin, C. The Expression of the Emotions in Man and Animals (John Murray, London, 1872).

  35. Russell, J. A circumplex model of affect.J. Pers. Soc. Psychol. 39, 1161–1178 (1980).

    Article  Google Scholar 

  36. Russell, J. A. & Mehrabian, A. Evidence for a three-factor theory of emotions. J. Res. Pers. 11, 273–294 (1977).

    Article  Google Scholar 

  37. Mehrabian, A. Basic Dimensions for a General Psychological Theory: Implications for Personality, Social, Environmental, and Developmental Studies (Oelgeschlager, Gunn & Hain, Cambridge, 1980).

  38. Plutchik, R. & Conte, H. R. Circumplex Models of Personality and Emotions (American Psychological Association, Washington DC, 1997).

  39. Ekman, P. Handbook of Cognition and Emotion (eds Dalgleish, T. & Power, M.) Ch. 3 (John Wiley and Sons, Chichester, 1999).

  40. Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual Technical Report A-8 (Univ. Florida, 2008).

  41. Golder, S. A. & Macy, M. W. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333, 1878–1881 (2011).

    Article  CAS  Google Scholar 

  42. Ribeiro, F. N., Araújo, M., Gonçalves, P., Gonçalves, M. A. & Benevenuto, F. SentiBench—a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci. 5, 23 (2016).

    Article  Google Scholar 

  43. Dodds, P. S. et al. Human language reveals a universal positivity bias. Proc. Natl Acad. Sci. USA 112, 2389–2394 (2015).

    Article  CAS  Google Scholar 

  44. Grigg, O. A., Farewell, V. T. & Spiegelhalter, D. J. Use of risk-adjusted CUSUM and RSPRT charts for monitoring in medical contexts. Stat. Methods Med. Res. 12, 147–170 (2003).

    Article  CAS  Google Scholar 

  45. Kring, A. M. & Gordon, A. H. Sex differences in emotion: expression, experience, and physiology. J. Pers. Soc. Psychol. 74, 686–703 (1998).

    Article  CAS  Google Scholar 

  46. McDuff, D., Kodra, E., Kaliouby, Rel & LaFrance, M. A large-scale analysis of sex differences in facial expressions. PLoS ONE 12, 1–11 (2017).

    Article  Google Scholar 

  47. Li, J., Ritter, A. & Hovy, E. Weakly supervised user profile extraction from Twitter. In Proc. 52nd Annual Meeting of the Association for Computational Linguistics 165–174 (ACL, 2014).

  48. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  49. Niculescu-Mizil, A. & Caruana, R. Predicting good probabilities with supervised learning. In Proc. 22nd International Conference on Machine Learning 625–632 (ACM, 2005).

  50. Pennington, J., Socher, R. & Manning, C. D. Glove: global vectors for word representation. In Proc. 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) 1532–1543 (ACL, 2014).

Download references


R.F. acknowledges the support from the NSFC (grant number 71501005). J.B. thanks the Defense Advanced Research Projects Agency (NGS2 2016 D17AC00005), the National Science Foundation (SMA-SBE: 1636636), the Economic Development Administration (EDA/ED17HDQ3120040), Wageningen University (the Netherlands) and the ISI Foundation (Turin, Italy) for support. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. Special thanks go to F. Radicchi and C. Scheffer for insightful comments, and R. B. Correia, who kindly set up our Twitter timeline database based on B. Gonçalves’ Twitter data collection.

Author information

Authors and Affiliations



R.F. and J.B. defined the research methodology, which O.V., I.A.v.d.L. and M.S. helped design. R.F. and J.B. collected the data. R.F., O.V. and J.B. conducted the analysis. A.V. designed and implemented the gender classifier. A.B. provided statistical advice. I.A.v.d.L. and M.S. conducted a literature review. R.F., O.V., I.A.v.d.L., M.S. and J.B. interpreted the results. R.F., O.V., A.B. and J.B. co-authored the manuscript text.

Corresponding authors

Correspondence to Rui Fan or Johan Bollen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Supplementary Figures 1–5, Supplementary Table 1, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, R., Varol, O., Varamesh, A. et al. The minute-scale dynamics of online emotions reveal the effects of affect labeling. Nat Hum Behav 3, 92–100 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing