Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Attention scales according to inferred real-world object size


Natural scenes consist of objects of varying shapes and sizes. The impact of object size on visual perception has been well-demonstrated, from classic mental imagery experiments1, to recent studies of object representations reporting topographic organization of object size in the occipito-temporal cortex2. While the role of real-world physical size in perception is clear, the effect of inferred size on attentional selection is ill-defined. Here, we investigate whether inferred real-world object size influences attentional allocation. Across five experiments, attentional allocation was measured in objects of equal retinal size, but varied in inferred real-world size (for example, domino, bulldozer). Following each experiment, participants rated the real-world size of each object. We hypothesized that, if inferred real-world size influences attention, selection in retinal size-matched objects should be less efficient in larger objects. This effect should increase with greater attentional demand. Predictions were supported by faster identified targets in objects inferred to be small than large, with costlier attentional shifting in large than small objects when attentional demand was high. Critically, there was a direct correlation between the rated size of individual objects and response times (and shifting costs). Finally, systematic degradation of size inference proportionally reduced object size effect. It is concluded that, along with retinal size, inferred real-world object size parametrically modulates attention. These findings have important implications for models of attentional control and invite sensitivity to object size for future studies that use real-world images in psychological research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design.

Domino (a,d), Agarunov Oktay-Abraham; pool table (a,c), Juan Pablo Bravo; outlet (b), Blaise Sewell (all icons reproduced from

Fig. 2: Data for experiment 1.
Fig. 3: Data for experiment 2, comparison across all scrambling conditions.

Domino, Agarunov Oktay-Abraham (reproduced from

Fig. 4: Data for experiment 3.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Kosslyn, S. M. Information representation in visual images. Cogn. Psychol. 7, 341–370 (1975).

    Article  Google Scholar 

  2. Konkle, T. & Oliva, A. A real-world size organization of object responses in occipitotemporal cortex. Neuron 74, 1114–1124 (2012).

    Article  CAS  Google Scholar 

  3. Carrasco, M. Visual attention: the past 25 years. Vision Res. 51, 1484–1525 (2011).

    Article  Google Scholar 

  4. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  5. Posner, M. I., Snyder, C. R. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol. Gen. 109, 160–174 (1980).

    Article  CAS  Google Scholar 

  6. Eriksen, C. W. & St. James, J. D. Visual attention within and around the field of focal attention: a zoom lens model. Percept. Psychophys. 40, 225–240 (1986).

    Article  CAS  Google Scholar 

  7. Duncan, J. Selective attention and the organization of visual information. J. Exp. Psychol. Gen. 113, 501–517 (1984).

    Article  CAS  Google Scholar 

  8. Valdes-Sosa, M., Bobes, M. A., Rodriguez, V. & Pinilla, T. Switching attention without shifting the spotlight object-based attentional modulation of brain potentials. J. Cogn. Neurosci. 10, 137–151 (1998).

    Article  CAS  Google Scholar 

  9. O’Craven, K. M., Downing, P. E. & Kanwisher, N. fMRI evidence for objects as the units of attentional selection. Nature 401, 584–587 (1999).

    Article  Google Scholar 

  10. Egly, R., Driver, J. & Rafal, R. D. Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. J. Exp. Psychol. Gen. 123, 161–177 (1994).

    Article  CAS  Google Scholar 

  11. Drummond, L. & Shomstein, S. The timecourse of space- and object-based attentional prioritization with varying degrees of certainty. Front. Integr. Neurosci. 7, 1–10 (2013).

    Article  Google Scholar 

  12. Muller, N. G. & Kleinschmidt, A. Dynamic interaction of object- and space-based attention in retinotopic visual areas. J. Neurosci. 23, 9812–9816 (2003).

    Article  Google Scholar 

  13. Shomstein, S. & Behrmann, M. Cortical systems mediating visual attention to both objects and spatial locations. Proc. Natl Acad. Sci. USA 103, 11387–11392 (2006).

    Article  CAS  Google Scholar 

  14. Malcolm, G. L., Rattinger, M. & Shomstein, S. Intrusive effects of semantic information on visual selective attention. Attention, Perception, Psychophys. 78, 2066–2078 (2016).

    Article  Google Scholar 

  15. Konkle, T. & Oliva, A. Canonical visual size for real-world objects. J. Exp. Psychol. Hum. Percept. Perform. 37, 23–37 (2011).

    Article  Google Scholar 

  16. Jefferies, L. N., Gmeindl, L. & Yantis, S. Attending to illusory differences in object size. Attention, Perception, Psychophys. 76, 1393–1402 (2014).

    Article  Google Scholar 

  17. Robertson, L. C. & Kim, M.-S. Effects of perceived space on spatial attention. Psychol. Sci. 10, 76–79 (1999).

    Article  Google Scholar 

  18. Murray, S. O., Boyaci, H. & Kersten, D. The representation of perceived angular size in human primary visual cortex. Nat. Neurosci. 9, 429–434 (2006).

    Article  CAS  Google Scholar 

  19. Konkle, T. & Oliva, A. Normative representation of objects: evidence for an ecological bias in perception and memory. In Proc. 29th Annual Cognitive Science Society (eds McNamara, D. S. & Trafton, J. G.) 407–412 (Cognitive Science Society, 2007).

  20. Epstein, W. & Baratz, S. S. Relative size in isolation as a stimulus for relative perceived distance. J. Exp. Psychol. 67, 507–513 (1964).

    Article  CAS  Google Scholar 

  21. Bar, M. Visual objects in context. Nat. Rev. Neurosci. 5, 617–629 (2004).

    Article  CAS  Google Scholar 

  22. Long, B., Konkle, T., Cohen, M. A. & Alvarez, G. A. Mid-level perceptual features distinguish objects of different real-world sizes. J. Exp. Psychol. Gen. 145, 95–109 (2016).

    Article  Google Scholar 

  23. Konkle, T. & Oliva, A. A familiar-size Stroop effect: real-world size is an automatic property of object representation. J. Exp. Psychol. Hum. Percept. Perform. 38, 561–569 (2012).

    Article  Google Scholar 

  24. Malcolm, G. L. & Shomstein, S. Object-based attention in real-world scenes. J. Exp. Psychol. Gen. 144, 257–263 (2015).

    Article  Google Scholar 

  25. Biederman, I. & Cooper, E. E. Size invariance in visual object priming. J. Exp. Psychol. Hum. Percept. Perform. 18, 121–133 (1992).

    Article  Google Scholar 

  26. Kosslyn, S. M., Thompson, W. L., Kim, I. J. & Alpert, N. M. Topographical representations of mental images in primary visual cortex. Nature 378, 783–785 (1995).

    Article  Google Scholar 

  27. Eckstein M. P., Koehler K., Welbourne L. E. & Akbas E. Humans, but not deep neural networks, often miss giant targets in scenes. Curr. Biol. 27, P2827–P2832 (2017).

    Article  Google Scholar 

  28. Wolfe, J. M. Visual attention: size matters. Curr. Biol. 27, R1002–R1003 (2017).

    Article  CAS  Google Scholar 

  29. Castiello, U. & Umiltá, C. Size of the attentional focus and efficiency of processing. Acta Psychol. (Amst.) 73, 195–209 (1990).

    Article  CAS  Google Scholar 

  30. Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol. 58, 25–45 (2007).

    Article  Google Scholar 

  31. Chao, L. L. & Martin, A. Representation of manipulable man-made objects in the dorsal stream. Neuroimage 12, 478–484 (2000).

    Article  CAS  Google Scholar 

  32. Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front. Psychol. 4, 1–12 (2013).

    Article  Google Scholar 

  33. Sekuler, R. & Blake, R. Perception 3rd edn (McGraw-Hill Education, New York, 1994).

  34. Peterson, M. A. in Pioneer Visual Neuroscience: A Festschrift for Naomi Weisstein (ed. Brown, J.) 151–166 (Taylor Francis, New York, 2018).

  35. Galera, C., Von Grünau, M. & Panagopoulos, A. Automatic focusing of attention on object size and shape. Psicologica 26, 147–160 (2005).

    Google Scholar 

  36. Herrmann, K., Montaser-Kouhsari, L., Carrasco, M. & Heeger, D. J. When size matters: attention affects performance by contrast or response gain. Nat. Neurosci. 13, 1554–1559 (2010).

    Article  CAS  Google Scholar 

  37. Kravitz, D. J., Saleem, K. S., Baker, C. I., Ungerleider, L. G. & Mishkin, M. The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends. Cogn. Sci. 17, 26–49 (2013).

    Article  Google Scholar 

  38. Konkle, T. & Caramazza, A. Tripartite organization of the ventral stream by animacy and object size. J. Neurosci. 33, 10235–10242 (2013).

    Article  CAS  Google Scholar 

  39. Peirce, J. W. PsychoPy-Psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007).

    Article  Google Scholar 

  40. Peirce, J. W. Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2, 1–8 (2009).

    Google Scholar 

  41. Rosenholtz, R., Li, Y. & Nakano, L. Measuring visual clutter. J. Vis. 7, 1–22 (2007).

    Article  Google Scholar 

Download references


This work was supported by a National Science Foundation grant no. BCS-1534823 to S.S. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank G. Malcolm, D. Kravitz and M. Behrmann for insightful comments on an earlier version of this manuscript. Special thanks go to M. Peterson for suggesting a spatial frequency control experiment reported in experiment 3.

Author information

Authors and Affiliations



A.J.C. and S.S. contributed to theoretical motivation, developed the study design and wrote the paper. A.J.C. programmed and conducted the experiments, performed data collection and analysis. J.C.N. and P.S.S. assisted with theoretical motivation, programming experiments and data collection, and provided revisions on manuscript drafts.

Corresponding author

Correspondence to Sarah Shomstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Methods, Supplementary References, Supplementary Figures 1–6

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collegio, A.J., Nah, J.C., Scotti, P.S. et al. Attention scales according to inferred real-world object size. Nat Hum Behav 3, 40–47 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing