Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Learning one’s genetic risk changes physiology independent of actual genetic risk

Abstract

Millions of people now access personal genetic risk estimates for diseases such as Alzheimer’s, cancer and obesity1. While this information can be informative2,3,4, research on placebo and nocebo effects5,6,7,8 suggests that learning of one’s genetic risk may evoke physiological changes consistent with the expected risk profile. Here we tested whether merely learning of one’s genetic risk for disease alters one’s actual risk by making people more likely to exhibit the expected changes in gene-related physiology, behaviour and subjective experience. Individuals were genotyped for actual genetic risk and then randomly assigned to receive either a ‘high-risk’ or ‘protected’ genetic test result for obesity via cardiorespiratory exercise capacity (experiment 1, N = 116) or physiological satiety (experiment 2, N = 107) before engaging in a task in which genetic risk was salient. Merely receiving genetic risk information changed individuals’ cardiorespiratory physiology, perceived exertion and running endurance during exercise, and changed satiety physiology and perceived fullness after food consumption in a self-fulfilling manner. Effects of perceived genetic risk on outcomes were sometimes greater than the effects associated with actual genetic risk. If simply conveying genetic risk information can alter actual risk, clinicians and ethicists should wrestle with appropriate thresholds for when revealing genetic risk is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Receiving genetic risk information for exercise capacity alters cardiorespiratory physiology, running endurance and subjective experience.
Fig. 3: Receiving protective genetic risk information for satiety increases physiological and self-reported satiety.

Similar content being viewed by others

Data availability

Data is available on the Open Science Framework at the following link: https://osf.io/gz57m/?view_only=71292e851b754bacbd89dc07c8113829.

References

  1. Regalado, A. 2017 was the year consumer DNA testing blew up. MIT Technology Review https://www.technologyreview.com/s/610233/2017-was-the-year-consumer-dna-testing-blew-up/ (12 February 2018).

  2. McBride, C. M., Koehly, L. M., Sanderson, S. C. & Kaphingst, K. A. The behavioral response to personalized genetic information: will genetic risk profiles motivate individuals and families to choose more healthful behaviors? Annu. Rev. Public Health 31, 89–103 (2010).

    Article  Google Scholar 

  3. Dancey, J. E., Bedard, P. L., Onetto, N. & Hudson, T. J. The genetic basis for cancer treatment decisions. Cell 148, 409–420 (2012).

    Article  CAS  Google Scholar 

  4. Rieder, M. J. et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352, 2285–2293 (2005).

    Article  CAS  Google Scholar 

  5. Kaptchuk, T. J. & Miller, F. G. Placebo effects in medicine. N. Engl. J. Med. 373, 8–9 (2015).

    Article  CAS  Google Scholar 

  6. Finniss, D. G., Kaptchuk, T. J., Miller, F. & Benedetti, F. Biological, clinical, and ethical advances of placebo effects. Lancet 375, 686–695 (2010).

    Article  Google Scholar 

  7. Colloca, L. & Finniss, D. Nocebo effects, patient-clinician communication, and therapeutic outcomes. JAMA 307, 567–568 (2012).

    Article  Google Scholar 

  8. Crum, A. J., Leibowitz, K. A. & Verghese, A. Making mindset matter. BMJ 356, j674 (2017).

    Article  Google Scholar 

  9. Rubinstein, W. S. et al. The NIH genetic testing registry: a new, centralized database of genetic tests to enable access to comprehensive information and improve transparency. Nucleic Acids Res. 41, D925–D935 (2012).

    Article  Google Scholar 

  10. Hollands, G. J. et al. The impact of communicating genetic risks of disease on risk-reducing health behaviour: systematic review with meta-analysis. BMJ 352, i1102 (2016).

    Article  Google Scholar 

  11. Dar-Nimrod, I. & Heine, S. J. Genetic essentialism: on the deceptive determinism of DNA. Psychol. Bull. 137, 800–818 (2011).

    Article  Google Scholar 

  12. Dar-Nimrod, I., Cheung, B. Y., Ruby, M. B. & Heine, S. J. Can merely learning about obesity genes affect eating behavior? Appetite 81, 269–276 (2014).

    Article  Google Scholar 

  13. Dar-Nimrod, I. & Heine, S. J. Exposure to scientific theories affects women‘s math performance. Science 314, 435 (2006).

    Article  CAS  Google Scholar 

  14. Dar‐Nimrod, I., Heine, S. J., Cheung, B. Y. & Schaller, M. Do scientific theories affect men‘s evaluations of sex crimes? Aggress. Behav. 37, 440–449 (2011).

    Article  Google Scholar 

  15. Persky, S., Bouhlal, S., Goldring, M. R. & McBride, C. M. Beliefs about genetic influences on eating behaviors: characteristics and associations with weight management confidence. Eat. Behav. 26, 93–98 (2017).

    Article  Google Scholar 

  16. Beauchamp, M. R., Rhodes, R. E., Kreutzer, C. & Rupert, J. L. Experiential versus genetic accounts of inactivity: implications for inactive individuals’ self-efficacy beliefs and intentions to exercise. Behav. Med. 37, 8–14 (2011).

    Article  Google Scholar 

  17. Wang, C. & Coups, E. J. Causal beliefs about obesity and associated health behaviors: results from a population-based survey. Int. J. Behav. Nutr. Phys. Act. 7, 19 (2010).

    Article  Google Scholar 

  18. Dweck, C. S. Can personality be changed? The role of beliefs in personality and change. Curr. Dir. Psychol. Sci. 17, 391–394 (2008).

    Article  Google Scholar 

  19. Crum, A. J., Salovey, P. & Achor, S. Rethinking stress: the role of mindsets in determining the stress response. J. Pers. Soc. Psychol. 104, 716–733 (2013).

    Article  Google Scholar 

  20. Levy, B. R., Slade, M. D., Kunkel, S. R. & Kasl, S. V. Longevity increased by positive self-perceptions of aging. J. Pers. Soc. Psychol. 83, 261–270 (2002).

    Article  Google Scholar 

  21. Levy, B. R., Hausdorff, J. M., Hencke, R. & Wei, J. Y. Reducing cardiovascular stress with positive self-stereotypes of aging. J. Gerontol. B Psychol. Sci. Soc. Sci. 55, 205–213 (2000).

    Article  Google Scholar 

  22. Crum, A. J., Akinola, M., Martin, A. & Fath, S. The role of stress mindset in shaping cognitive, emotional, and physiological responses to challenging and threatening stress. Anxiety Stress Coping 30, 379–395 (2017).

    Article  Google Scholar 

  23. Benedetti, F., Amanzio, M., Vighetti, S. & Asteggiano, G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 26, 12014–12022 (2006).

    Article  CAS  Google Scholar 

  24. Crum, A. J. & Langer, E. J. Mind-set matters exercise and the placebo effect. Psychol. Sci. 18, 165–171 (2007).

    Article  Google Scholar 

  25. Crum, A. J., Corbin, W. R., Brownell, K. D. & Salovey, P. Mind over milkshakes: mindsets, not just nutrients, determine ghrelin response. Health Psychol. 30, 424–429 (2011).

    Article  Google Scholar 

  26. Barsky, A. J. The iatrogenic potential of the physician’s words. JAMA 318, 2425–2426 (2017).

    Article  Google Scholar 

  27. Silvestri, A. et al. Report of erectile dysfunction after therapy with beta-blockers is related to patient knowledge of side effects and is reversed by placebo. Eur. Heart J. 24, 1928–1932 (2003).

    Article  CAS  Google Scholar 

  28. Myers, M. G., Cairns, J. A. & Singer, J. The consent form as a possible cause of side effects. Clin. Pharmacol. Ther. 42, 250–253 (1987).

    Article  CAS  Google Scholar 

  29. Green, R. C. et al. Disclosure of APOE genotype for risk of Alzheimer‘s disease. N. Engl. J. Med. 361, 245–254 (2009).

    Article  CAS  Google Scholar 

  30. Lineweaver, T. T., Bondi, M. W., Galasko, D. & Salmon, D. P. Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults. Am. J. Psychiatry 171, 201–208 (2014).

    Article  Google Scholar 

  31. Dar-Nimrod, I., Zuckerman, M. & Duberstein, P. R. The effects of learning about one‘s own genetic susceptibility to alcoholism: a randomized experiment. Genet. Med. 15, 132–138 (2012).

    Article  Google Scholar 

  32. de Viron, S. et al. Impact of genetic notification on smoking cessation: systematic review and pooled-analysis. PLoS ONE 7, e40230 (2012).

    Article  Google Scholar 

  33. Bloss, C. S., Schork, N. J. & Topol, E. J. Effect of direct-to-consumer genomewide profiling to assess disease risk. N. Engl. J. Med. 364, 524–534 (2011).

    Article  CAS  Google Scholar 

  34. Boeldt, D., Schork, N., Topol, E. & Bloss, C. Influence of individual differences in disease perception on consumer response to direct‐to‐consumer genomic testing. Clin. Genet. 87, 225–232 (2015).

    Article  CAS  Google Scholar 

  35. Frosch, D. L., Mello, P. & Lerman, C. Behavioral consequences of testing for obesity risk. Cancer Epidemiol. Biomark. Prev. 14, 1485–1489 (2005).

    Article  Google Scholar 

  36. Meisel, S. F., Walker, C. & Wardle, J. Psychological responses to genetic testing for weight gain: a vignette study. Obesity 20, 540–546 (2012).

    Article  CAS  Google Scholar 

  37. Sanderson, S., Persky, S. & Michie, S. Psychological and behavioral responses to genetic test results indicating increased risk of obesity: does the causal pathway from gene to obesity matter? Public Health Genomics 13, 34–47 (2010).

    Article  CAS  Google Scholar 

  38. Harvey-Berino, J., Gold, E. C., West, D. S. & Shuldiner, A. R. Does genetic testing for obesity influence confidence in the ability to lose weight? A pilot investigation. J. Acad. Nutr. Diet. 101, 1351–1353 (2001).

    CAS  Google Scholar 

  39. Meisel, S. F., Beeken, R. J., van Jaarsveld, C. H. & Wardle, J. Genetic susceptibility testing and readiness to control weight: results from a randomized controlled trial. Obesity 23, 305–312 (2015).

    Article  Google Scholar 

  40. Wang, C. et al. A randomized trial examining the impact of communicating genetic and lifestyle risks for obesity. Obesity 24, 2481–2490 (2016).

    Article  Google Scholar 

  41. Ahn, W.-K. & Lebowitz, M. S. An experiment assessing effects of personalized feedback about genetic susceptibility to obesity on attitudes towards diet and exercise. Appetite 120, 23–31 (2018).

    Article  Google Scholar 

  42. Karoly, H. C. et al. Genetic influences on physiological and subjective responses to an aerobic exercise session among sedentary adults. J. Cancer Epidemiol. 2012, 1–12 (2012).

    Article  Google Scholar 

  43. Rankinen, T., Argyropoulos, G., Rice, T., Rao, D. C. & Bouchard, C. CREB1 is a strong genetic predictor of the variation in exercise heart rate response to regular exercise: the HERITAGE Family Study. Circ. Cardiovasc. Genet. 3, 294–299 (2010).

    Article  CAS  Google Scholar 

  44. Rankinen, T. et al. Heritability of submaximal exercise heart rate response to exercise training is accounted for by nine SNPs. J. Appl. Physiol. 112, 892–897 (2011).

    Article  Google Scholar 

  45. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  Google Scholar 

  46. den Hoed, M., Westerterp-Plantenga, M. S., Bouwman, F. G., Mariman, E. C. & Westerterp, K. R. Postprandial responses in hunger and satiety are associated with the rs9939609 single nucleotide polymorphism in FTO. Am. J. Clin. Nutr. 90, 1426–1432 (2009).

    Article  Google Scholar 

  47. Karra, E. et al. A link between FTO, ghrelin, and impaired brain food-cue responsivity. J. Clin. Investig. 123, 3539–3551 (2013).

    Article  CAS  Google Scholar 

  48. Wardle, J. et al. Obesity associated genetic variation in FTO is associated with diminished satiety. J. Clin. Endocrinol. Metab. 93, 3640–3643 (2008).

    Article  CAS  Google Scholar 

  49. Rapuano, K. M. et al. Genetic risk for obesity predicts nucleus accumbens size and responsivity to real-world food cues. Proc. Natl Acad. Sci. USA 114, 160–165 (2017).

    Article  CAS  Google Scholar 

  50. Velders, F. P. et al. FTO atrs9939609, food responsiveness, emotional control and symptoms of ADHD in preschool children. PLoS ONE 7, e49131 (2012).

    Article  CAS  Google Scholar 

  51. Lovallo, W. R. Stress and Health: Biological and Psychological Interactions (Sage Publications, Thousand Oaks, 2015).

  52. Crum, A. & Zuckerman, B. Changing mindsets to enhance treatment effectiveness. JAMA 317, 2063–2064 (2017).

    Article  Google Scholar 

  53. LaRusse, S. et al. Genetic susceptibility testing versus family history-based risk assessment: impact on perceived risk of Alzheimer disease. Genet. Med. 7, 48–53 (2005).

    Article  Google Scholar 

  54. Lerman, C. et al. Incorporating biomarkers of exposure and genetic susceptibility into smoking cessation treatment: effects on smoking-related cognitions, emotions, and behavior change. Health Psychol. 16, 87–99 (1997).

    Article  CAS  Google Scholar 

  55. Voils, C. I. et al. Does type 2 diabetes genetic testing and counseling reduce modifiable risk factors? A randomized controlled trial of veterans. J. Gen. Intern. Med. 30, 1591–1598 (2015).

    Article  Google Scholar 

  56. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Investig. 101, 515–520 (1998).

    Article  CAS  Google Scholar 

  57. De Silva, A. et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans. Cell Metab. 14, 700–706 (2011).

    Article  Google Scholar 

  58. Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 87, 1409–1439 (2007).

    Article  CAS  Google Scholar 

  59. Dossat, A. M., Lilly, N., Kay, K. & Williams, D. L. Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J. Neurosci. 31, 14453–14457 (2011).

    Article  CAS  Google Scholar 

  60. Turton, M., Shea, D., Gunn, I. & Beak, S. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    Article  CAS  Google Scholar 

  61. Wren, A. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    Article  CAS  Google Scholar 

  62. Malik, S., McGlone, F., Bedrossian, D. & Dagher, A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metab. 7, 400–409 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Foundation for the Science of the Therapeutic Encounter, the National Science Foundation GRFP Grant No. DGE-11474 and the National Institutes of Health DP2 AT009511 and U54EB020405. The funders had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript. We thank Y. Rosenberg-Hasson, the Clinical Translational Research Unit, Human Immune Monitoring Center, Human Performance Lab and Protein and Nucleic Acid Facility at Stanford University for assistance in the collection and processing of biological samples. We thank colleagues C. Dweck, H. Markus, K. Hall and G. Walton for comments on versions of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.P.T. and A.J.C. conceived and designed the study. B.P.T., A.S., S.L.D. and A.J.C. designed protocol details. B.P.T. and D.Z.B. were responsible for consenting participants, running participants through the protocol and debriefing participants. A.S. was responsible for processing physiological data, B.P.T. and D.Z.B. were in charge of data management and J.P.G. was in charge of data analysis. B.P.T. wrote the first draft, and all authors contributed critical revisions of the manuscript.

Corresponding author

Correspondence to Bradley P. Turnwald.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Notes, Supplementary Figures 1–3, Supplementary Tables 1–11, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turnwald, B.P., Goyer, J.P., Boles, D.Z. et al. Learning one’s genetic risk changes physiology independent of actual genetic risk. Nat Hum Behav 3, 48–56 (2019). https://doi.org/10.1038/s41562-018-0483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0483-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research