Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The universal decay of collective memory and attention

Abstract

Collective memory and attention are sustained by two channels: oral communication (communicative memory) and the physical recording of information (cultural memory). Here, we use data on the citation of academic articles and patents, and on the online attention received by songs, movies and biographies, to describe the temporal decay of the attention received by cultural products. We show that, once we isolate the temporal dimension of the decay, the attention received by cultural products decays following a universal biexponential function. We explain this universality by proposing a mathematical model based on communicative and cultural memory, which fits the data better than previously proposed log-normal and exponential models. Our results reveal that biographies remain in our communicative memory the longest (20–30 years) and music the shortest (about 5.6 years). These findings show that the average attention received by cultural products decays following a universal biexponential function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Universal patterns in the decay of human collective memory.
Fig. 2: Scheme of the collective memory model.
Fig. 3: The universal decay of collective memory.
Fig. 4: Goodness of fit for all cohorts of APS papers (n = 485,105) and USPTO patents (n = 1,681,690).
Fig. 5: Model parameters described by equation (6) and for the same data deployed in Fig. 2.

Similar content being viewed by others

Data availability

The data sets from the APS, analysed during the current study, are available in the APS Data Sets for Research repository, under request: https://journals.aps.org/datasets. The data sets of the USPTO, analysed during the current study, are available in the NBER repository: http://www.nber.org/patents/. The data sets for songs, movies and biographies generated and analysed during the current study are available from the corresponding authors upon reasonable request.

References

  1. Halbwachs, M. La Mémoire Collective (Albin Michel, Paris, 1997).

  2. Assmann, J. Collective memory and cultural identity. New Ger. Crit. 65, 125–133 (1995).

    Article  Google Scholar 

  3. Assmann, J. Das kulturelle Gedächtnis. Schrift, Erinnerung und politische Identität in frühen Hochkulturen (Verlag C. H. Beck, Munich, 2007).

  4. Assmann, J. in Cultural Memories (eds Meusburger, P. et al.) 15–27 (Springer, Heidelberg, 2011).

  5. Wertsch, J. V. Voices of Collective Remembering (Cambridge Univ. Press, Cambridge, 2002).

  6. Goldhammer, A., Nora, P. & Kritzman, L. D. Realms of Memory: The Construction of the French Past (Columbia Univ. Press, New York, 1998).

  7. Roediger, H. & DeSoto, K. Forgetting the presidents. Science 346, 1106–1109 (2014).

    Article  CAS  Google Scholar 

  8. Roediger, H. L. III, Zaromb, F. M. & Butler, A. C. in Memory in Mind and Culture (eds Boyer, P. & Wertsch, J. V.) 138–170 (Cambridge Univ. Press, Cambridge, 2009).

  9. Zaromb, F., Butler, A. C., Agarwal, P. K. & Roediger, H. L. III. Collective memories of three wars in United States history in younger and older adults. Mem. Cognit. 42, 383–399 (2014).

    Article  Google Scholar 

  10. Rubin, D. C. How quickly we forget. Science 346, 1058–1059 (2014).

    Article  CAS  Google Scholar 

  11. García-Gavilanes, R., MollgaardA., Tsvetkova, M. & Yasseri, T. The memory remains: understanding collective memory in the digital age. Sci. Adv. 3, e1602368 (2017).

    Article  Google Scholar 

  12. Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact. Science 342, 127–132 (2013).

    Article  CAS  Google Scholar 

  13. Higham, K. W., Governale, M., Jaffe, A. B. & Zülicke, U. Fame and obsolescence: disentangling growth and aging dynamics of patent citations. Phys. Rev. E 95, 042309 (2017).

    Article  CAS  Google Scholar 

  14. Higham, K., Governale, M., Jaffe, A. & Zülicke, U. Unraveling the dynamics of growth, aging and ination for citations to scientific articles from specific research fields. J. Informetr. 11, 1190–1200 (2017).

    Article  Google Scholar 

  15. Valverde, S., Solé, R. V., Bedau, M. A. & Packard, N. Topology and evolution of technology innovation networks. Phys. Rev. E 76, 056118 (2007).

    Article  Google Scholar 

  16. Csárdi, G., Strandburg, K. J., Zalányi, L., Tobochnik, J. & Érdi, P. Modeling innovation by a kinetic description of the patent citation system. Physica A 374, 783–793 (2007).

    Article  Google Scholar 

  17. Golosovsky, M. & Solomon, S. Stochastic dynamical model of a growing citation network based on a self-exciting point process. Phys. Rev. Lett. 109, 098701 (2012).

    Article  Google Scholar 

  18. Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of networks with aging of sites. Phys. Rev. E 62, 1842–1845 (2000).

    Article  CAS  Google Scholar 

  19. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  Google Scholar 

  20. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  Google Scholar 

  21. Price, D. D. S. A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inf. Sci. 27, 292–306 (1976).

    Article  Google Scholar 

  22. Yule, G. U. A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willis, F.R.S. Phil. Trans. R. Soc. Lond. B 213, 21–87 (1925).

    Article  Google Scholar 

  23. Merton, R. K. The Matthew effect in science, II: cumulative advantage and the symbolism of intellectual property. Isis 79, 606–623 (1988).

    Article  Google Scholar 

  24. Assmann, J. in Cultural Memory Studies. An International and Interdisciplinary Handbook (eds Erll, A. & Nünning, A.) 109–118 (Walter de Gruyter, Berlin, 2008).

  25. Hirst, W., Yamashiro, J. K. & Coman, A. Collective memory from a psychological perspective. Trends. Cogn. Sci. 22, 438–451 (2018).

    Article  Google Scholar 

  26. Roediger, H. L. & DeSoto, K. A. Recognizing the presidents: was Alexander Hamilton president? Psychol. Sci. 27, 644–650 (2016).

    Article  Google Scholar 

  27. Rubin, D. C. Memory in Oral Traditions: the Cognitive Psychology of Epic, Ballads, and Counting-Out Rhymes (Oxford Univ. Press, Oxford, 1995).

  28. Hammack, P. L. Narrative and the politics of meaning. Narrat. Inq. 21, 311–318 (2011).

    Article  Google Scholar 

  29. Sperber, D. & Hirschfeld, L. A. The cognitive foundations of cultural stability and diversity. Trends Cogn. Sci. 8, 40–46 (2004).

    Article  Google Scholar 

  30. Buskell, A. What are cultural attractors? Biol. Philos. 32, 377–394 (2017).

    Article  Google Scholar 

  31. Richerson, P. J. & Boyd, R. Not by Genes Alone: How Culture Transformed Human Evolution (Univ. Chicago Press, Chicago, 2005).

  32. Storm, B. C., Bjork, E. L. & Bjork, R. A. On the durability of retrieval-induced forgetting. J. Cogn. Psychol. 24, 617–629 (2012).

    Article  Google Scholar 

  33. Garcia-Bajos, E., Migueles, M. & Anderson, M. Script knowledge modulates retrieval-induced forgetting for eyewitness events. Memory 17, 92–103 (2009).

    Article  Google Scholar 

  34. Cuc, A., Koppel, J. & Hirst, W. Silence is not golden: a case for socially shared retrieval-induced forgetting. Psychol. Sci. 18, 727–733 (2007).

    Article  Google Scholar 

  35. Echterhoff, G., Higgins, E. T. & Levine, J. M. Shared reality: experiencing commonality with others’ inner states about the world. Perspect. Psychol. Sci. 4, 496–521 (2009).

    Article  Google Scholar 

  36. Coman, A. & Hirst, W. Social identity and socially shared retrieval-induced forgetting: the effects of group membership. J. Exp. Psychol. Gen. 144, 717–722 (2015).

    Article  Google Scholar 

  37. Coman, A., Stone, C. B., Castano, E. & Hirst, W. Justifying atrocities: the effect of moral-disengagement strategies on socially shared retrieval-induced forgetting. Psychol. Sci. 25, 1281–1285 (2014).

    Article  Google Scholar 

  38. Stone, C. B., Barnier, A. J., Sutton, J. & Hirst, W. Building consensus about the past: schema consistency and convergence in socially shared retrieval-induced forgetting. Memory 18, 170–184 (2010).

    Article  Google Scholar 

  39. Kurzban, R., Tooby, J. & Cosmides, L. Can race be erased? Coalitional computation and social categorization. Proc. Natl Acad. Sci. USA 98, 15387–15392 (2001).

    Article  CAS  Google Scholar 

  40. Yu, A. Z., Ronen, S., Hu, K., Lu, T. & Hidalgo, C. A. Pantheon 1.0, a manually verified dataset of globally famous biographies. Sci. Data 3, 150075 (2016).

    Article  Google Scholar 

  41. Jara-Figueroa, C., Yu, A. Z. & Hidalgo, C. A. How the medium shapes the message: printing and the rise of the arts and sciences. PLoS ONE (in the press).

  42. Skiena, S. & Ward, C. B. Who’s Bigger? Where Historical Figures Really Rank (Cambridge Univ. Press, Cambridge, 2014).

  43. Kanhabua, N., Nguyen, T. N. & Niederée, C. What triggers human remembering of events? A large-scale analysis of catalysts for collective memory in Wikipedia. In Proc. 14th ACM/IEEE-CS Joint Conference on Digital Libraries 341–350 (IEEE, 2014).

  44. Uzzi, B., Mukherjee, S., Stringer, M. & Jones, B. Atypical combinations and scientific impact. Science 342, 468–472 (2013).

    Article  CAS  Google Scholar 

  45. Mukherjee, S., Romero, D. M., Jones, B. & Uzzi, B. The nearly universal link between the age of past knowledge and tomorrow's breakthroughs in science and technology: the hotspot. Sci. Adv. 3, e1601315 (2017).

    Article  Google Scholar 

  46. Ronen, S. et al. Links that speak: the global language network and its association with global fame. Proc. Natl Acad. Sci. USA 111, E5616–E5622 (2014).

    Article  CAS  Google Scholar 

  47. Ferron, M. & Massa, P. Beyond the encyclopedia: collective memories in Wikipedia. Mem. Stud. 7, 22–45 (2014).

    Article  Google Scholar 

  48. Yucesoy, B. & Barabási, A.-L. Untangling performance from success. EPJ Data Sci. 5, 17 (2016).

    Article  Google Scholar 

  49. Halbwachs, M. On Collective Memory (Univ. Chicago Press, Chicago, 1992).

  50. Fortunato, S. et al. Science of science. Science 359, eaao0185 (2018).

    Article  Google Scholar 

  51. Radicchi, F., Fortunato, S. & Castellano, C. Universality of citation distributions: toward an objective measure of scientific impact. Proc. Natl Acad. Sci. USA 105, 17268–17272 (2008).

    Article  CAS  Google Scholar 

  52. Kuhn, T., Perc, M. & Helbing, D. Inheritance patterns in citation networks reveal scientific memes. Phys. Rev. X 4, 041036 (2014).

    Google Scholar 

  53. Sinatra, R., Wang, D., Deville, P., Song, C. & Barabasi, A.-L. Quantifying the evolution of individual scientific impact. Science 354, aaf5239 (2016).

    Article  Google Scholar 

  54. King, M. M., Bergstrom, C. T., Correll, S. J., Jacquet, J. & West, J. D. Men set their own cites high: gender and self-citation across fields and over time. Socius 3, 1–22 (2017).

    Google Scholar 

  55. Chu, J. S. G. & Evans, J. A. Too many papers? Slowed canonical progress in large fields of science. Preprint at SocArXiv https://doi.org/10.31235/osf.io/jk63c (2018).

  56. Yook, S.-H., Radicchi, F. & Meyer-Ortmanns, H. Self-similar scale-free networks and disassortativity. Phys. Rev. E 72, 045105 (2005).

    Article  Google Scholar 

  57. Mukherjee, S., Uzzi, B., Jones, B. F. & Stringer, M. in Knowledge and Networks (eds Glückler, J. et al.) 243–267 (Springer, Cham, 2017).

  58. Shen, H.-W. & Barabasi, A.-L. Collective credit allocation in science. Proc. Natl Acad. Sci. USA 111, 12325–12330 (2014).

    Article  CAS  Google Scholar 

  59. Hall, B. H., Jaffe, A. B. & Trajtenberg, M. The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools (National Bureau of Economic Research, 2001); www.nber.org/papers/w8498

  60. Jaffe, A. B., Trajtenberg, M. & Henderson, R. Geographic localization of knowledge spillovers as evidenced by patent citations. Q. J. Econ. 108, 577–598 (1993).

    Article  Google Scholar 

  61. The Hot 100 Ranking Billboard https://www.billboard.com/charts/hot-100 (2016).

  62. Spotify web API Spotify https://developer.spotify.com/documentation/web-api/ (2017).

  63. Last.fm web services last.fm https://www.last.fm/api (2017).

Download references

Acknowledgements

C.C. and C.R.-S. acknowledge financial support from Centro de Investigación en Complejidad Social and Universidad del Desarrollo. C.J.-F. and C.A.H. acknowledge support from the MIT Media Lab Consortia. The authors thank F. Pinheiro, T. Roukny, G. Castro-Dominguez, the Centro de Investigación en Complejidad Social, the Collective Learning Group at the MIT Media Lab and the Center for Complex Network Research at Northeastern University for the helpful insights and discussions. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.C., C.A.H. and A.-L.B. contributed to the study conception and design, interpretation of data and drafting of the manuscript. C.C. and C.J.-F. contributed to the acquisition of data, data analysis, modelling and drafting of the manuscript. C.R.-S. contributed to study conception and design, and interpretation of data.

Corresponding authors

Correspondence to Cristian Candia or César A. Hidalgo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–13, Supplementary Model, Supplementary Notes 1–4, Supplementary Tables 1–3, Supplementary Discussion, Supplementary References

Reporting Summary

Supplementary Software.

Supplementary software

Supplementary Data Set.

Supplementary data set

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candia, C., Jara-Figueroa, C., Rodriguez-Sickert, C. et al. The universal decay of collective memory and attention. Nat Hum Behav 3, 82–91 (2019). https://doi.org/10.1038/s41562-018-0474-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0474-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing