Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Generalization guides human exploration in vast decision spaces

An Author Correction to this article was published on 23 October 2020

This article has been updated

Abstract

From foraging for food to learning complex games, many aspects of human behaviour can be framed as a search problem with a vast space of possible actions. Under finite search horizons, optimal solutions are generally unobtainable. Yet, how do humans navigate vast problem spaces, which require intelligent exploration of unobserved actions? Using various bandit tasks with up to 121 arms, we study how humans search for rewards under limited search horizons, in which the spatial correlation of rewards (in both generated and natural environments) provides traction for generalization. Across various different probabilistic and heuristic models, we find evidence that Gaussian process function learning—combined with an optimistic upper confidence bound sampling strategy—provides a robust account of how people use generalization to guide search. Our modelling results and parameter estimates are recoverable and can be used to simulate human-like performance, providing insights about human behaviour in complex environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Procedure and behavioural results.
Fig. 2: Overview of the function learning–UCB model specified using median participant parameter estimates from experiment 2.
Fig. 3: Modelling results.
Fig. 4: Mismatched length-scale (λ) simulation results.

Similar content being viewed by others

Data availability

Anonymized participant data and model simulation data are available at https://github.com/charleywu/gridsearch.

Code availability

The code used for all models and analyses is available at https://github.com/charleywu/gridsearch.

Change history

References

  1. Todd, P. M., Hills, T. T. & Robbins, T. W. Cognitive Search: Evolution, Algorithms, and the Brain (MIT Press, Cambridge, 2012).

  2. Kolling, N., Behrens, T. E., Mars, R. B. & Rushworth, M. F. Neural mechanisms of foraging. Science 336, 95–98 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bramley, N. R., Dayan, P., Griffiths, T. L. & Lagnado, D. A. Formalizing neurath’s ship: approximate algorithms for online causal learning. Psychol. Rev. 124, 301–338 (2017).

    PubMed  Google Scholar 

  4. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998).

  5. Steyvers, M., Lee, M. D. & Wagenmakers, E.-J. A Bayesian analysis of human decision-making on bandit problems. J. Math. Psychol. 53, 168–179 (2009).

    Google Scholar 

  6. Speekenbrink, M. & Konstantinidis, E. Uncertainty and exploration in a restless bandit problem. Top. Cogn. Sci. 7, 351–367 (2015).

    PubMed  Google Scholar 

  7. Palminteri, S., Lefebvre, G., Kilford, E. J. & Blakemore, S.-J. Confirmation bias in human reinforcement learning: evidence from counterfactual feedback processing. PLoS Comput. Biol. 13, e1005684 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. Reverdy, P. B., Srivastava, V. & Leonard, N. E. Modeling human decision making in generalized gaussian multiarmed bandits. Proc. IEEE 102, 544–571 (2014).

    Google Scholar 

  9. Lee, S. W., Shimojo, S. & O’Doherty, J. P. Neural computations underlying arbitration between model-based and model-free learning. Neuron 81, 687–699 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).

    PubMed  Google Scholar 

  11. Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J.Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017).

    PubMed  Google Scholar 

  12. Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A. & Cohen, J. D. Humans use directed and random exploration to solve the explore–exploit dilemma. J. Exp. Psychol. Gen. 143, 2074–2081 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Tesauro, G. Practical issues in temporal difference learning. Mach. Learn. 8, 257–277 (1992).

    Google Scholar 

  14. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    CAS  PubMed  Google Scholar 

  15. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    CAS  PubMed  Google Scholar 

  16. Huys, Q. J. et al. Interplay of approximate planning strategies. Proc. Natl Acad. Sci. USA 112, 3098–3103 (2015).

    CAS  PubMed  Google Scholar 

  17. Solway, A. & Botvinick, M. M. Evidence integration in model-based tree search. Proc. Natl Acad. Sci. USA 112, 11708–11713 (2015).

    CAS  PubMed  Google Scholar 

  18. Guez, A., Silver, D. & Dayan, P. Scalable and efficient Bayes-adaptive reinforcement learning based on Monte-Carlo tree search. J. Artif. Intell. Res. 48, 841–883 (2013).

    Google Scholar 

  19. Rasmussen, C. E. & Kuss, M. Gaussian processes in reinforcement learning. Adv. Neural Inf. Process. Syst. 16, 751–758 (2004).

    Google Scholar 

  20. Sutton, R. S. Generalization in reinforcement learning: successful examples using sparse coarse coding. Adv. Neural Inf. Process. Syst. 8, 1038–1044 (1996).

    Google Scholar 

  21. Lucas, C. G., Griffiths, T. L., Williams, J. J. & Kalish, M. L. A rational model of function learning. Psychon. Bull. Rev. 22, 1193–1215 (2015).

    PubMed  Google Scholar 

  22. Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M. & Gershman, S. J. Compositional inductive biases in function learning. Cogn. Psychol. 99, 44–79 (2017).

    PubMed  Google Scholar 

  23. Borji, A. & Itti, L. Bayesian optimization explains human active search. Adv. Neural Inf. Process. Syst. 26, 55–63 (2013).

    Google Scholar 

  24. Dayan, P. & Niv, Y. Reinforcement learning: the good, the bad and the ugly. Curr. Opin. Neurobiol. 18, 185–196 (2008).

    CAS  PubMed  Google Scholar 

  25. Srivastava, V., Reverdy, P. & Leonard, N. E. Correlated multiarmed bandit problem: Bayesian algorithms and regret analysis. Preprint at https://arxiv.org/abs/1507.01160 (2015).

  26. Wilke, A. et al. A game of hide and seek: expectations of clumpy resources influence hiding and searching patterns. PLoS ONE 10, e0130976 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stojic, H., Analytis, P. P. & Speekenbrink, M. Human behavior in contextual multi-armed bandit problems. In Proc. 37th Annual Meeting of the Cognitive Science Society (eds Noelle, D. C. et al.) 2290–2295 (Cognitive Science Society, 2015).

  29. Schulz, E., Konstantinidis, E. & Speekenbrink, M. Putting bandits into context: how function learning supports decision making. J. Exp. Psychol. Learn. Mem. Cogn. 44, 927–943 (2018).

    PubMed  Google Scholar 

  30. Wu, C. M., Schulz, E., Garvert, M. M., Meder, B. & Schuck, N. W. Connecting conceptual and spatial search via a model of generalization. In Proc. 40th Annual Meeting of the Cognitive Science Society (eds Rogers, T. T., Rau, M., Zhu, X. & Kalish, C. W.) 1183–1188 (Cognitive Science Society, 2018).

  31. Hills, T. T., Jones, M. N. & Todd, P. M. Optimal foraging in semantic memory. Psychol. Rev. 119, 431–440 (2012).

    PubMed  Google Scholar 

  32. Abbott, J. T., Austerweil, J. L. & Griffiths, T. L. Random walks on semantic networks can resemble optimal foraging. Psychol. Rev. 122, 558–569 (2015).

    PubMed  Google Scholar 

  33. Schulz, E., Tenenbaum, J. B., Reshef, D. N., Speekenbrink, M. & Gershman, S. Assessing the perceived predictability of functions. In Proc. 37th Annual Meeting of the Cognitive Science Society (eds Noelle, D. C. et al.) 2116–2121 (Cognitive Science Society, 2015).

  34. Wright, K. agridat: Agricultural Datasets R Package Version 1.13 (2017); https://CRAN.R-project.org/package=agridat

  35. Lindley, D. V. On a measure of the information provided by an experiment. Ann. Math. Stat. 27, 986–1005 (1956).

    Google Scholar 

  36. Nelson, J. D. Finding useful questions: on Bayesian diagnosticity, probability, impact, and information gain. Psychol. Rev. 112, 979–999 (2005).

    PubMed  Google Scholar 

  37. Crupi, V. & Tentori, K. State of the field: measuring information and confirmation. Stud. Hist. Philos. Sci. A 47, 81–90 (2014).

    Google Scholar 

  38. Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) (MIT Press, Cambridge, 2006).

  39. Schulz, E., Speekenbrink, M. & Krause, A. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018).

    Google Scholar 

  40. Auer, P. Using confidence bounds for exploitation–exploration trade-offs. J. Mach. Learn. Res. 3, 397–422 (2002).

    Google Scholar 

  41. Neal, R. M. Bayesian Learning for Neural Networks (Springer, New York, 1996).

  42. Shepard, R. N. Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987).

    CAS  PubMed  Google Scholar 

  43. Kaufmann, E., Cappé, O. & Garivier, A. On Bayesian upper confidence bounds for bandit problems. In Proc. 15th International Conference on Artificial Intelligence and Statistics (AISTAT) (eds Lawrence, N. D. & Girolami, M. A.) 592–600 (JMLR, 2012).

  44. Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J. & Friston, K. J. Bayesian model selection for group studies. Neuroimage 46, 1004–1017 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Myung, I. J., Kim, C. & Pitt, M. A. Toward an explanation of the power law artifact: insights from response surface analysis. Mem. Cognit. 28, 832–840 (2000).

    CAS  PubMed  Google Scholar 

  46. Palminteri, S., Wyart, V. & Koechlin, E. The importance of falsification in computational cognitive modeling. Trends Cogn. Sci. 21, 425–433 (2017).

    PubMed  Google Scholar 

  47. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Metzen, J. H. Minimum regret search for single- and multi-task optimization. Preprint at https://arxiv.org/abs/1602.01064 (2016).

  49. Gotovos, A., Casati, N., Hitz, G. & Krause, A. Active learning for level set estimation. In International Joint Conference on Artificial Intelligence (IJCAI) (ed. Rossi, F.) 1344–1350 (AAAI Press/International Joint Conferences on Artificial Intelligence, 2013).

  50. Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. Robots that can adapt like animals. Nature 521, 503–507 (2015).

    CAS  PubMed  Google Scholar 

  51. Deisenroth, M. P., Fox, D. & Rasmussen, C. E. Gaussian processes for data-efficient learning in robotics and control. IEEE Trans. Pattern Anal. Mach. Intell. 37, 408–423 (2015).

    PubMed  Google Scholar 

  52. Sui, Y., Gotovos, A., Burdick, J. & Krause, A. Safe exploration for optimization with Gaussian processes. In International Conference on Machine Learning (eds Bach, F. & Blei, D.) 997–1005 (PMLR, 2015).

  53. Srinivas, N., Krause, A., Kakade, S. & Seeger, M. W. Gaussian process optimization in the bandit setting: no regret and experimental design. In Proc. 27th International Conference on Machine Learning (eds Fürnkranz, J. & Joachims, T.) 1015–1022 (Omnipress, 2010).

  54. Mockus, J. Bayesian Approach to Global Optimization: Theory and Applications Vol. 37 (Springer, Dordrecht, 2012).

  55. Reece, S. & Roberts, S. An introduction to Gaussian processes for the Kalman filter expert. In 13th Conference on Information Fusion (FUSION) 1–9 (IEEE, 2010).

  56. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    CAS  Google Scholar 

  57. Schölkopf, B. Artificial intelligence: learning to see and act. Nature 518, 486–487 (2015).

    PubMed  Google Scholar 

  58. Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653 (2017).

    CAS  PubMed  Google Scholar 

  59. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D. & Iverson, G. Bayesian t-tests for accepting and rejecting the null hypothesis. Psychon. Bull. Rev. 16, 225–237 (2009).

    PubMed  Google Scholar 

  60. van Doorn, J., Ly, A., Marsman, M. & Wagenmakers, E. J. Bayesian latent-normal inference for the rank sum test, the signed rank test, and Spearman’s ρ. Preprint at https://arxiv.org/abs/1712.06941 (2017).

Download references

Acknowledgements

We thank P. Todd, T. Pleskac, N. Bramley, H. Singmann and M. Moussaïd for helpful feedback. This work was supported by the International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (C.M.W.), by the Harvard Data Science Initiative (E.S.), and DFG grants ME 3717/2-2 to B.M. and NE 1713/1-2 to J.D.N. as part of the New Frameworks of Rationality (SPP 1516) priority programme. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.M.W. and E.S. designed the experiments, collected and analysed the data and wrote the paper. M.S., J.D.N. and B.M. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Charley M. Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–9, Supplementary Tables 1–3, Supplementary References

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C.M., Schulz, E., Speekenbrink, M. et al. Generalization guides human exploration in vast decision spaces. Nat Hum Behav 2, 915–924 (2018). https://doi.org/10.1038/s41562-018-0467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0467-4

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics