Article | Published:

Behavioural and neural evidence for self-reinforcing expectancy effects on pain

Nature Human Behaviourvolume 2pages838855 (2018) | Download Citation

Abstract

Beliefs and expectations often persist despite evidence to the contrary. Here we examine two potential mechanisms underlying such ‘self-reinforcing’ expectancy effects in the pain domain: modulation of perception and biased learning. In two experiments, cues previously associated with symbolic representations of high or low temperatures preceded painful heat. We examined trial-to-trial dynamics in participants’ expected pain, reported pain and brain activity. Subjective and neural pain responses assimilated towards cue-based expectations, and pain responses in turn predicted subsequent expectations, creating a positive dynamic feedback loop. Furthermore, we found evidence for a confirmation bias in learning: higher- and lower-than-expected pain triggered greater expectation updating for high- and low-pain cues, respectively. Individual differences in this bias were reflected in the updating of pain-anticipatory brain activity. Computational modelling provided converging evidence that expectations influence both perception and learning. Together, perceptual assimilation and biased learning promote self-reinforcing expectations, helping to explain why beliefs can be resistant to change.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

The single-trial behavioural and NPS data, which are needed to reproduce all behavioural and NPS analyses in the paper, are available through the Open Science Framework repository, https://osf.io/bqkz3/. The fMRI data, which are needed to reproduce the analyses on anticipatory brain activity, are available from the corresponding author upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998).

  2. 2.

    Pavlov, I. P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (Dover Publications, New York, 1960).

  3. 3.

    Benedetti, F. Placebo effects: from the neurobiological paradigm to translational implications. Neuron 84, 623–637 (2014).

  4. 4.

    Benedetti, F., Carlino, E. & Pollo, A. How placebos change the patient’s brain. Neuropsychopharmacology 36, 339–354 (2011).

  5. 5.

    Colloca, L. & Benedetti, F. Placebos and painkillers: is mind as real as matter? Nat. Rev. Neurosci. 6, 545–552 (2005).

  6. 6.

    Wager, T. D. & Atlas, L. Y. The neuroscience of placebo effects: connecting context, learning and health. Nat. Rev. Neurosci. 16, 403–418 (2015).

  7. 7.

    Oken, B. S. Placebo effects: clinical aspects and neurobiology. Brain 131, 2812–2823 (2008).

  8. 8.

    Price, D. D., Finniss, D. G. & Benedetti, F. A comprehensive review of the placebo effect: recent advances and current thought. Annu. Rev. Psychol. 59, 565–590 (2008).

  9. 9.

    Walsh, B. T., Seidman, S. N., Sysko, R. & Gould, M. Placebo response in studies of major depression: variable, substantial, and growing. J. Am. Med. Assoc. 287, 1840–1847 (2002).

  10. 10.

    Sterzer, P., Frith, C. & Petrovic, P. Believing is seeing: expectations alter visual awareness. Curr. Biol. 18, R697–R698 (2008).

  11. 11.

    Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends. Cogn. Sci. 13, 403–409 (2009).

  12. 12.

    Gilbert, C. D. & Li, W. Top-down influences on visual processing. Nat. Rev. Neurosci. 14, 350–363 (2013).

  13. 13.

    Nitschke, J. B. et al. Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nat. Neurosci. 9, 435–442 (2006).

  14. 14.

    Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

  15. 15.

    Srinivasan, M. V., Laughlin, S. B. & Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. B. Biol. Sci. 216, 427–459 (1982).

  16. 16.

    Buchel, C., Geuter, S., Sprenger, C. & Eippert, F. Placebo analgesia: a predictive coding perspective. Neuron 81, 1223–1239 (2014).

  17. 17.

    Friston, K. & Kiebel, S. Predictive coding under the free-energy principle. Phil. Trans. R. Soc. Lond. B 364, 1211–1221 (2009).

  18. 18.

    Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. Lond. B 360, 815–836 (2005).

  19. 19.

    Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

  20. 20.

    Merton, R. K. The self-fulfilling prophecy. Antioch Rev. 8, 193–210 (1948).

  21. 21.

    Wager, T. D., Scott, D. J. & Zubieta, J. K. Placebo effects on human mu-opioid activity during pain. Proc. Natl Acad. Sci. USA 104, 11056–11061 (2007).

  22. 22.

    Wiech, K. Deconstructing the sensation of pain: the influence of cognitive processes on pain perception. Science 354, 584–587 (2016).

  23. 23.

    Atlas, L. Y. & Wager, T. D. How expectations shape pain. Neurosci. Lett. 520, 140–148 (2012).

  24. 24.

    Montgomery, G. H. & Kirsch, I. Classical conditioning and the placebo effect. Pain 72, 107–113 (1997).

  25. 25.

    Atlas, L. Y., Bolger, N., Lindquist, M. A. & Wager, T. D. Brain mediators of predictive cue effects on perceived pain. J. Neurosci. 30, 12964–12977 (2010).

  26. 26.

    Colloca, L., Petrovic, P., Wager, T. D., Ingvar, M. & Benedetti, F. How the number of learning trials affects placebo and nocebo responses. Pain 151, 430–439 (2010).

  27. 27.

    Jepma, M. & Wager, T. D. Conceptual conditioning: mechanisms mediating conditioning effects on pain. Psychol. Sci. 26, 1728–1739 (2015).

  28. 28.

    Koban, L. & Wager, T. D. Beyond conformity: social influences on pain reports and physiology. Emotion 16, 24–32 (2016).

  29. 29.

    Vase, L., Norskov, K. N., Petersen, G. L. & Price, D. D. Patients’ direct experiences as central elements of placebo analgesia. Phil. Trans. R. Soc. Lond. B 366, 1913–1921 (2011).

  30. 30.

    Vase, L., Robinson, M. E., Verne, G. N. & Price, D. D. Increased placebo analgesia over time in irritable bowel syndrome (IBS) patients is associated with desire and expectation but not endogenous opioid mechanisms. Pain 115, 338–347 (2005).

  31. 31.

    Craggs, J. G., Price, D. D., Perlstein, W. M., Verne, G. N. & Robinson, M. E. The dynamic mechanisms of placebo induced analgesia: evidence of sustained and transient regional involvement. Pain 139, 660–669 (2008).

  32. 32.

    Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H. & Prokasy, W. F.) 64–99 (Appleton-Century-Crofts, New York, 1972).

  33. 33.

    Eippert, F., Finsterbusch, J., Bingel, U. & Buchel, C. Direct evidence for spinal cord involvement in placebo analgesia. Science 326, 404 (2009).

  34. 34.

    Geuter, S. & Buchel, C. Facilitation of pain in the human spinal cord by nocebo treatment. J. Neurosci. 33, 13784–13790 (2013).

  35. 35.

    Plassmann, H., O’Doherty, J., Shiv, B. & Rangel, A. Marketing actions can modulate neural representations of experienced pleasantness. Proc. Natl Acad. Sci. USA 105, 1050–1054 (2008).

  36. 36.

    Doll, B. B., Hutchison, K. E. & Frank, M. J. Dopaminergic genes predict individual differences in susceptibility to confirmation bias. J. Neurosci. 31, 6188–6198 (2011).

  37. 37.

    Doll, B. B., Jacobs, W. J., Sanfey, A. G. & Frank, M. J. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation. Brain Res. 1299, 74–94 (2009).

  38. 38.

    Biele, G., Rieskamp, J., Krugel, L. K. & Heekeren, H. R. The neural basis of following advice. PLoS Biol. 9, e1001089 (2011).

  39. 39.

    Li, J., Delgado, M. R. & Phelps, E. A. How instructed knowledge modulates the neural systems of reward learning. Proc. Natl Acad. Sci. USA 108, 55–60 (2011).

  40. 40.

    Staudinger, M. R. & Buchel, C. How initial confirmatory experience potentiates the detrimental influence of bad advice. Neuroimage 76, 125–133 (2013).

  41. 41.

    Biele, G., Rieskamp, J. & Gonzalez, R. Computational models for the combination of advice and individual learning. Cogn. Sci. 33, 206–242 (2009).

  42. 42.

    Apkarian, A. V., Bushnell, M. C., Treede, R. D. & Zubieta, J. K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

  43. 43.

    Peyron, R., Laurent, B. & Garcia-Larrea, L. Functional imaging of brain responses to pain. Neurophysiol. Clin. 30, 263–288 (2000).

  44. 44.

    Coghill, R. C. et al. Distributed processing of pain and vibration by the human brain. J. Neurosci. 14, 4095–4108 (1994).

  45. 45.

    Rainville, P., Bushnell, M. C. & Duncan, G. H. Representation of acute and persistent pain in the human CNS: potential implications for chemical intolerance. Ann. N. Y. Acad. Sci. 933, 130–141 (2001).

  46. 46.

    Mazzola, L., Isnard, J., Peyron, R., Guenot, M. & Mauguiere, F. Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 146, 99–104 (2009).

  47. 47.

    Johansen, J. P., Fields, H. L. & Manning, B. H. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl Acad. Sci. USA 98, 8077–8082 (2001).

  48. 48.

    Johansen, J. P. & Fields, H. L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7, 398–403 (2004).

  49. 49.

    Woo, C. W., Roy, M., Buhle, J. T. & Wager, T. D. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain. PLoS Biol. 13, e1002036 (2015).

  50. 50.

    Lopez-Sola, M. et al. Towards a neurophysiological signature for fibromyalgia. Pain 158, 34–47 (2017).

  51. 51.

    Lindquist, M. A. et al. Group-regularized individual prediction: theory and application to pain. Neuroimage 145, 274–287 (2017).

  52. 52.

    Krishnan, A. et al. Somatic and vicarious pain are represented by dissociable multivariate brain patterns. eLife 5, e15166 (2016).

  53. 53.

    Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

  54. 54.

    Tabor, A., Thacker, M. A., Moseley, G. L. & Kording, K. P. Pain: a statistical account. PLoS Comput. Biol. 13, e1005142 (2017).

  55. 55.

    Anchisi, D. & Zanon, M. A Bayesian perspective on sensory and cognitive integration in pain perception and placebo analgesia. PLoS ONE 10, e0117270 (2015).

  56. 56.

    Grahl, A., Onat, S. & Buchel, C. The periaqueductal gray and Bayesian integration in placebo analgesia. eLife 7, e32930 (2018).

  57. 57.

    Dayan, P. & Kakade, S. in Advances in Neural Information Processing Systems Vol. 13 (eds Dietterich, T. G., Leen, T. K. & Tresp, V.) 451–457 (MIT Press, Cambridge, 2000).

  58. 58.

    Kalman, R. E. A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960).

  59. 59.

    Koyama, T., McHaffie, J. G., Laurienti, P. J. & Coghill, R. C. The subjective experience of pain: where expectations become reality. Proc. Natl Acad. Sci. USA 102, 12950–12955 (2005).

  60. 60.

    Wager, T. D., Atlas, L. Y., Leotti, L. A. & Rilling, J. K. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. J. Neurosci. 31, 439–452 (2011).

  61. 61.

    Porro, C. A. et al. Does anticipation of pain affect cortical nociceptive systems? J. Neurosci. 22, 3206–3214 (2002).

  62. 62.

    Lin, C. S., Hsieh, J. C., Yeh, T. C., Lee, S. Y. & Niddam, D. M. Functional dissociation within insular cortex: the effect of pre-stimulus anxiety on pain. Brain Res. 1493, 40–47 (2013).

  63. 63.

    Rissman, J., Gazzaley, A. & D’Esposito, M. Measuring functional connectivity during distinct stages of a cognitive task. Neuroimage 23, 752–763 (2004).

  64. 64.

    Mumford, J. A., Davis, T. & Poldrack, R. A. The impact of study design on pattern estimation for single-trial multivariate pattern analysis. Neuroimage 103, 130–138 (2014).

  65. 65.

    Rosenthal, R. & Jacobson, L. Pygmalion in the Classroom; Teacher Expectation and Pupils’ Intellectual Development (Holt, New York, 1968).

  66. 66.

    Bonte, M., Parviainen, T., Hytonen, K. & Salmelin, R. Time course of top-down and bottom-up influences on syllable processing in the auditory cortex. Cereb. Cortex 16, 115–123 (2006).

  67. 67.

    Firestone, C. & Scholl, B. J. Cognition does not affect perception: evaluating the evidence for ‘top-down’ effects. Behav. Brain Sci. 39, e229 (2016).

  68. 68.

    Ma, Y. et al. Serotonin transporter polymorphism alters citalopram effects on human pain responses to physical pain. Neuroimage 135, 186–196 (2016).

  69. 69.

    Brascher, A. K., Becker, S., Hoeppli, M. E. & Schweinhardt, P. Different brain circuitries mediating controllable and uncontrollable pain. J. Neurosci. 36, 5013–5025 (2016).

  70. 70.

    Woo, C. W. et al. Quantifying cerebral contributions to pain beyond nociception. Nat. Commun. 8, 14211 (2017).

  71. 71.

    Becker, S., Gandhi, W., Pomares, F., Wager, T. D. & Schweinhardt, P. Orbitofrontal cortex mediates pain inhibition by monetary reward. Soc. Cogn. Affect. Neurosci. 12, 651–661 (2017).

  72. 72.

    Jones, E. E. Attribution: Perceiving the Causes of Behavior (General Learning Press, Morristown, 1972).

  73. 73.

    Weiner, B. An Attributional Theory of Motivation and Emotion (Springer-Verlag, New York, 1986).

  74. 74.

    Huber, P. J. Robust Statistics (Wiley, New York, 1981).

  75. 75.

    Landy, M. S., Maloney, L. T., Johnston, E. B. & Young, M. Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Res. 35, 389–412 (1995).

  76. 76.

    de Gardelle, V. & Summerfield, C. Robust averaging during perceptual judgment. Proc. Natl Acad. Sci. USA 108, 13341–13346 (2011).

  77. 77.

    Clark, W. C. & Yang, J. C. Acupunctural analgesia? Evaluation by signal detection theory. Science 184, 1096–1098 (1974).

  78. 78.

    Clark, W. C. Sensory-decision theory analysis of the placebo effect on the criterion for pain and thermal sensitivity. J. Abnorm. Psychol. 74, 363–371 (1969).

  79. 79.

    Wiech, K. et al. Influence of prior information on pain involves biased perceptual decision-making. Curr. Biol. 24, R679–R681 (2014).

  80. 80.

    Lavin, M. J. Establishment of flavor-flavor associations using a sensory preconditioning training procedure. Learn. Motiv. 7, 173–183 (1976).

  81. 81.

    Rizley, R. C. & Rescorla, R. A. Associations in second-order conditioning and sensory preconditioning. J. Comp. Physiol. Psychol. 81, 1–11 (1972).

  82. 82.

    White, K. & Davey, G. C. Sensory preconditioning and UCS inflation in human ‘fear’ conditioning. Behav. Res. Ther. 27, 161–166 (1989).

  83. 83.

    Wimmer, G. E. & Shohamy, D. Preference by association: how memory mechanisms in the hippocampus bias decisions. Science 338, 270–273 (2012).

  84. 84.

    Coppens, E., Spruyt, A., Vandenbulcke, M., Van Paesschen, W. & Vansteenwegen, D. Classically conditioned fear responses are preserved following unilateral temporal lobectomy in humans when concurrent US-expectancy ratings are used. Neuropsychologia 47, 2496–2503 (2009).

  85. 85.

    Atlas, L. Y., Doll, B. B., Li, J., Daw, N. D. & Phelps, E. A. Instructed knowledge shapes feedback-driven aversive learning in striatum and orbitofrontal cortex, but not the amygdala. eLife 5, e15192 (2016).

  86. 86.

    Yang, H. et al. Striatal-limbic activation is associated with intensity of anticipatory anxiety. Psychiat. Res. 204, 123–131 (2012).

  87. 87.

    Roy, M. et al. Representation of aversive prediction errors in the human periaqueductal gray. Nat. Neurosci. 17, 1607–1612 (2014).

  88. 88.

    Seymour, B. et al. Temporal difference models describe higher-order learning in humans. Nature 429, 664–667 (2004).

  89. 89.

    O’Doherty, J. P. Contributions of the ventromedial prefrontal cortex to goal-directed action selection. Ann. N. Y. Acad. Sci. 1239, 118–129 (2011).

  90. 90.

    Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427 (2013).

  91. 91.

    Hare, T. A., Camerer, C. F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).

  92. 92.

    Flor, H. New developments in the understanding and management of persistent pain. Curr. Opin. Psychiatry 25, 109–113 (2012).

  93. 93.

    Soderlund, A. The role of educational and learning approaches in rehabilitation of whiplash-associated disorders in lessening the transition to chronicity. Spine 36, S280–S285 (2011).

  94. 94.

    Mansour, A. R., Farmer, M. A., Baliki, M. N. & Apkarian, A. V. Chronic pain: the role of learning and brain plasticity. Restor. Neurol. Neurosci. 32, 129–139 (2014).

  95. 95.

    Apkarian, A. V. Pain perception in relation to emotional learning. Curr. Opin. Neurobiol. 18, 464–468 (2008).

  96. 96.

    Colloca, L. & Benedetti, F. How prior experience shapes placebo analgesia. Pain 124, 126–133 (2006).

  97. 97.

    Andre-Obadia, N., Magnin, M. & Garcia-Larrea, L. On the importance of placebo timing in rTMS studies for pain relief. Pain 152, 1233–1237 (2011).

  98. 98.

    Zunhammer, M. et al. The effects of treatment failure generalize across different routes of drug administration. Sci. Transl. Med. 9, eaal2999 (2017).

  99. 99.

    Kessner, S., Wiech, K., Forkmann, K., Ploner, M. & Bingel, U. The effect of treatment history on therapeutic outcome: an experimental approach. J. Am. Med. Assoc. Intern. Med. 173, 1468–1469 (2013).

  100. 100.

    Jenewein, J. et al. Fear-learning deficits in subjects with fibromyalgia syndrome? Eur. J. Pain 17, 1374–1384 (2013).

  101. 101.

    Meulders, A. et al. Contingency learning deficits and generalization in chronic unilateral hand pain patients. J. Pain. 15, 1046–1056 (2014).

  102. 102.

    Zaman, J., Vlaeyen, J. W., Van Oudenhove, L., Wiech, K. & Van Diest, I. Associative fear learning and perceptual discrimination: a perceptual pathway in the development of chronic pain. Neurosci. Biobehav. Rev. 51, 118–125 (2015).

  103. 103.

    Browning, M., Behrens, T. E., Jocham, G., O’Reilly, J. X. & Bishop, S. J. Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat. Neurosci. 18, 590–596 (2015).

  104. 104.

    Koban, L. et al. Social anxiety is characterized by biased learning about performance and the self. Emotion 17, 1144–1155 (2017).

  105. 105.

    Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. A computational and neural model of momentary subjective well-being. Proc. Natl Acad. Sci. USA 111, 12252–12257 (2014).

  106. 106.

    Eldar, E. & Niv, Y. Interaction between emotional state and learning underlies mood instability. Nat. Commun. 6, 6149 (2015).

  107. 107.

    Jepma, M., Jones, M. & Wager, T. D. The dynamics of pain: evidence for simultaneous site-specific habituation and site-nonspecific sensitization in thermal pain. J. Pain. 15, 734–746 (2014).

  108. 108.

    Wager, T. D. et al. Brain mediators of cardiovascular responses to social threat. Part II: Prefrontal-subcortical pathways and relationship with anxiety. Neuroimage 47, 836–851 (2009).

  109. 109.

    Wager, T. D. et al. Brain mediators of cardiovascular responses to social threat. Part I: Reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. Neuroimage 47, 821–835 (2009).

  110. 110.

    Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B. & Dolan, R. J. Cortical substrates for exploratory decisions in humans. Nature 441, 876–879 (2006).

  111. 111.

    Zajkowski, W. K., Kossut, M. & Wilson, R. C.A. A causal role for right frontopolar cortex in directed, but not random, exploration. eLife 6, e27430 (2017).

  112. 112.

    Jones, M., Curran, T., Mozer, M. C. & Wilder, M. H. Sequential effects in response time reveal learning mechanisms and event representations. Psychol. Rev. 120, 628–666 (2013).

  113. 113.

    Sutton, R. S. Gain adaptation beats least squares? In Proc. 7th Yale Workshop on Adaptive and Learning Systems 161–166 (1992); https://pdfs.semanticscholar.org/7ec8/876f219b3b3d5c894a3f395c89c382029cc5.pdf

  114. 114.

    Yu, A. & Cohen, J. in Advances in Neural Information Processing Systems Vol. 22 (eds Bengio, Y. et al.) 1873–1880 (NIPS Foundation, La Jolla, 2009).

  115. 115.

    Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002).

  116. 116.

    Jacobs, R. A. Optimal integration of texture and motion cues to depth. Vision Res. 39, 3621–3629 (1999).

  117. 117.

    Kakade, S. & Dayan, P. Acquisition and extinction in autoshaping. Psychol. Rev. 109, 533–544 (2002).

  118. 118.

    Kording, K. P. & Wolpert, D. M. Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004).

  119. 119.

    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–29 (2017).

  120. 120.

    Gelman, A. Bayesian Data Analysis 3rd edn (CRC Press, Boca Raton, 2014).

  121. 121.

    Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis 1, 515–534 (2006).

  122. 122.

    Bennett, C. H. Efficient estimation of free-energy differences from monte-carlo data. J. Comput. Phys. 22, 245–268 (1976).

  123. 123.

    Meng, X. L. & Wong, W. H. Simulating ratios of normalizing constants via a simple identity: a theoretical exploration. Stat. Sin. 6, 831–860 (1996).

  124. 124.

    Gronau, Q. F. et al. A tutorial on bridge sampling. J. Math. Psychol. 81, 80–97 (2017).

  125. 125.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

  126. 126.

    Wager, T. D., Keller, M. C., Lacey, S. C. & Jonides, J. Increased sensitivity in neuroimaging analyses using robust regression. Neuroimage 26, 99–113 (2005).

Download references

Acknowledgements

We thank M. Powell and D. Ryan for assistance with data collection, and M. Roy and M. López-Solà for discussions. This research was made possible with the support of National Institutes of Health grants NIMH 2R01MH076136 and R01DA027794 (to T.D.W.), a VENI grant of the Netherlands Organization for Scientific Research (to M. Jepma), and AFOSR grant FA9550-14-1-0318 (to M. Jones). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

  1. Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands

    • Marieke Jepma
    •  & Johnny van Doorn
  2. Department of Psychology and Neuroscience and Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA

    • Marieke Jepma
    • , Leonie Koban
    • , Matt Jones
    •  & Tor D. Wager

Authors

  1. Search for Marieke Jepma in:

  2. Search for Leonie Koban in:

  3. Search for Johnny van Doorn in:

  4. Search for Matt Jones in:

  5. Search for Tor D. Wager in:

Contributions

M.Jepma, L.K. and T.D.W. conceived and designed the experiments. M.Jepma conducted the experiments and analysed the data. L.K., J.D., M.Jones and T.D.W. provided expertise and feedback. M.Jepma, L.K., J.D., M.Jones and T.D.W. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Marieke Jepma.

Supplementary information

  1. Supplementary Information

    Supplementary Results, Supplementary Figures 1–4, Supplementary Tables 1–3

  2. Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41562-018-0455-8