Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Choice overload reduces neural signatures of choice set value in dorsal striatum and anterior cingulate cortex

Abstract

Modern societies offer a large variety of choices1,2, which is generally thought to be valuable3,4,5,6,7. But having too much choice can be detrimental1,2,3,8,9,10,11 if the costs of choice outweigh its benefits due to ‘choice overload’12,13,14. Current explanatory models of choice overload mainly derive from behavioural studies13,14. A neuroscientific investigation could further inform these models by revealing the covert mental processes during decision-making. We explored choice overload using functional magnetic resonance imaging while subjects were either choosing from varying-sized choice sets or were browsing them. When choosing from sets of 6, 12 or 24 items, functional magnetic resonance imaging activity in the striatum and anterior cingulate cortex resembled an inverted U-shaped function of choice set size. Activity was highest for 12-item sets, which were perceived as having ‘the right amount’ of options and was lower for 6-item and 24-item sets, which were perceived as ‘too small’ and ‘too large’, respectively. Enhancing choice set value by adding a dominant option led to an overall increase of activity. When subjects were browsing, the decision costs were diminished and the inverted U-shaped activity patterns vanished. Activity in the striatum and anterior cingulate reflects choice set value and can serve as neural indicator of choice overload.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Choice set value.
Fig. 2: Experimental design.
Fig. 3: Behavioural performance.
Fig. 4: Brain areas reflecting choice set value.

Similar content being viewed by others

Data availability

The data that support the findings of this study as well as the data underlying our power calculations are available from the corresponding author upon reasonable request. Unthresholded statistical maps of our main fMRI-results are available at NeuroVault.org66 (https://neurovault.org/collections/4117/).

References

  1. Schwartz, B. & Ward, A. in Positive Psychology in Practice (eds Linley, P. A. & Joseph, S.) Ch. 6 (Wiley, New York, 2004).

  2. Iyengar, S. S., Huberman, G. & Jiang, W. Pension Design and Structure: New Lessons from Behavioral Finance (eds Mitchell O. S. & Utkus S. P.) Ch. 5 (Oxford Scholarship Online, Oxford, 2004).

  3. Iyengar, S. S. & Lepper, M. R. When choice is demotivating: can one desire too much of a good thing? J. Pers. Soc. Psychol. 79, 995–1006 (2000).

    Article  CAS  Google Scholar 

  4. Steiner, I. D. Perceived freedom. Adv. Exp. Social Psychol. 5, 187–248 (1970).

    Article  Google Scholar 

  5. Reibstein, D. J., Youngblood, S. A. & Fromkin, H. L. Number of choices and perceived decision freedom as a determinant of satisfaction and consumer behavior. J. Appl. Psychol. 60, 434–437 (1975).

    Article  Google Scholar 

  6. Zuckerman, M., Porac, J. F., Lathin, D., Smith, R. & Deci, E. L. On the importance of self-determination for intrinsically motivated behavior. Pers. Soc. Psychol. Bull. 4, 443–446 (1978).

    Article  Google Scholar 

  7. Ryan, R. M. & Deci, E. L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psychol. 55, 68–78 (2000).

    Article  CAS  Google Scholar 

  8. Sarver, T. Anticipating regret: why fewer options may be better. Econometrica. 76, 263–305 (2008).

    Article  Google Scholar 

  9. Loewenstein, G. Is more choice always better? Social Security Brief 7, 1–8 (1999).

    Google Scholar 

  10. Chernev, A. When more is less and less is more: the role of ideal point availability and assortment in consumer choice. J. Consum. Res. 30, 170–183 (2003).

    Article  Google Scholar 

  11. Chernev, A., Böckenholt, U. & Goodman, J. Choice overload: a conceptual review and meta-analysis. J. Consum. Psychol. 25, 333–358 (2015).

    Article  Google Scholar 

  12. Shah, A. M. & Wolford, G. Buying behavior as a function of parametric variation of number of choices. Psychol. Sci. 18, 369–370 (2007).

    Article  Google Scholar 

  13. Reutskaja, E. & Hogarth, R. M. Satisfaction in choice as a function of the number of alternatives: when ‘goods satiate’. Psychol. Market. 26, 197–203 (2009).

    Article  Google Scholar 

  14. Schwartz, B. & Grant, A. M. Too much of a good thing: the challenge and opportunity of the inverted-U. Persp. Psychol. Sci. 6, 61–76 (2011).

    Article  Google Scholar 

  15. Reutskaja, E., Camerer, C., Nagel, R. & Rangel, A. Search dynamics in consumer choice under time pressure: an eye-tracking study. Am. Econ. Rev. 101, 900–926 (2011).

    Article  Google Scholar 

  16. Coombs, C. H. & Avrunin, G. S. Single-peaked functions and the theory of preference. Psychol. Rev. 84, 216–230 (1977).

    Article  Google Scholar 

  17. Scheibehenne, B., Greifeneder, R. & Todd, P. M. Can there ever be too many options? A meta-analytic review of choice overload. J. Consum. Res. 37, 409–425 (2010).

    Article  Google Scholar 

  18. Chernev, A. Decision focus and consumer choice among assortments. J. Consum. Res. 33, 50–59 (2006).

    Article  Google Scholar 

  19. Chernev, A. & Hamilton, R. Assortment size and option attractiveness in consumer choice among retailers. J. Marketing Res. 46, 410–420 (2009).

    Article  Google Scholar 

  20. Choi, J. & Fishbach, A. Choice as an end versus a means. J. Marketing Res. 48, 544–554 (2011).

    Article  Google Scholar 

  21. Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E. J. & Rushworth, M. F. S. Effort-based cost–benefit valuation and the human brain. J. Neurosci. 29, 4531–4541 (2009).

    Article  CAS  Google Scholar 

  22. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    Article  CAS  Google Scholar 

  23. Botvinick, M. & Braver, T. Motivation and cognitive control: from behavior to neural mechanism. Annu. Rev. Psychol. 66, 83–113 (2015).

    Article  Google Scholar 

  24. Andersen, R. A. & Buneo, C. A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

    Article  CAS  Google Scholar 

  25. Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004).

    Article  CAS  Google Scholar 

  26. Orban, G. A., Van Essen, D. & Vanduffel, W. Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn. Sci. 8, 315–324 (2004).

    Article  Google Scholar 

  27. Medendorp, W., Beurze, S., Van Pelt, S. & Van DerWerf, J. Behavioral and cortical mechanisms for spatial coding and action planning. Cortex 44, 587–597 (2008).

    Article  Google Scholar 

  28. Lindner, A., Iyer, A., Kagan, I. & Andersen, R. A. Human posterior parietal cortex plans where to reach and what to avoid. J. Neurosci. 30, 11715–11725 (2010).

    Article  CAS  Google Scholar 

  29. Rosenbaum, D. A. Human movement initiation: specification of arm, direction, and extent. J. Exp. Psychol. Gen. 109, 444–474 (1980).

    Article  CAS  Google Scholar 

  30. Kimmig, H. et al. Relationship between saccadic eye movements and cortical activity as measured by fMRI: quantitative and qualitative aspects. Exp. Brain Res. 141, 184–194 (2001).

    Article  CAS  Google Scholar 

  31. Kennerley, S. W., Dahmubed, A. F., Lara, A. H. & Wallis, J. D. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21, 1162–1178 (2009).

    Article  Google Scholar 

  32. Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty, and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  Google Scholar 

  33. Hosokawa, T., Kennerley, S. W., Sloan, J. & Wallis, J. D. Single-neuron mechanisms underlying cost–benefit analysis in frontal cortex. J. Neurosci. 33, 17385–17397 (2013).

    Article  CAS  Google Scholar 

  34. Prévost, C., Pessiglione, M., Météreau, E., Cléry-Melin, M. L. & Dreher, J. C. Separate valuation subsystems for delay and effort decision costs. J. Neurosci. 30, 14080–14090 (2010).

    Article  Google Scholar 

  35. Kurniawan, I. T., Guitart-Masip, M., Dayan, P. & Dolan, R. J. Effort and valuation in the brain: the effects of anticipation and execution. J. Neurosci. 33, 6160–6169 (2013).

    Article  CAS  Google Scholar 

  36. Klein-Flugge, M. C., Kennerley, S. W., Friston, K. & Bestmann, S. Neural signatures of value comparison in human cingulate cortex during decisions requiring an effort–reward trade-off. J. Neurosci. 36, 10002–10015 (2016).

    Article  CAS  Google Scholar 

  37. Chong, T. T. et al. Neurocomputational mechanisms underlying subjective valuation of effort costs. PLoS Biol. 15, e1002598 (2017).

    Article  Google Scholar 

  38. Kolling, N., Behrens, T. E., Mars, R. B. & Rushworth, M. F. Neural mechanisms of foraging. Science 336, 95–98 (2012).

    Article  CAS  Google Scholar 

  39. Schultz, W. Reward functions of the basal ganglia. J. Neural. Transm. 123, 679–693 (2016).

    Article  Google Scholar 

  40. Botvinick, M. M., Huffstetler, S. & McGuire, J. T. Effort discounting in human nucleus accumbens. Cogn. Affect. Behav. Neurosci. 9, 16–27 (2009).

    Article  Google Scholar 

  41. Kurniawan, I. T. et al. Choosing to make an effort: the role of striatum in signaling physical effort of a chosen action. J. Neurophysiol. 104, 313–321 (2010).

    Article  CAS  Google Scholar 

  42. Iyer, A., Lindner, A., Kagan, I. & Andersen, R. A. Motor preparatory activity in posterior parietal cortex is modulated by subjective absolute value. PLoS Biol. 8, e1000444 (2010).

    Article  Google Scholar 

  43. Apicella, P., Ljungberg, T., Scarnati, E. & Schultz, W. Responses to reward in monkey dorsal and ventral striatum. Exp. Brain Res. 85, 491–500 (1991).

    Article  CAS  Google Scholar 

  44. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).

    Article  CAS  Google Scholar 

  45. Alexander, G. E., De Long, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986).

    Article  CAS  Google Scholar 

  46. Haber, S. N. Corticostriatal circuitry. Dialogues Clin. Neurosci. 18, 7–21 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Schmidt, L., Lebreton, M., Cléry-Melin, M. L., Daunizeau, J. & Pessiglione, M. Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biol. 10, e1001266 (2012).

    Article  CAS  Google Scholar 

  48. Schouppe, N., Demanet, J., Boehler, C. N., Ridderinkhof, K. R. & Notebaert, W. The role of the striatum in effort-based decision-making in the absence of reward. J. Neurosci. 34, 2148–2154 (2014).

    Article  CAS  Google Scholar 

  49. Brehm, J. W. & Self, E. A. The intensity of motivation. Annu. Rev. Psychol. 40, 109–131 (1989).

    Article  CAS  Google Scholar 

  50. La Gory, J., Dearen, B. B., Tebo, K. & Wright, R. A. Reported fatigue, difficulty, and cardiovascular response to an auditory mental arithmetic challenge. Int. J. Psychophysiol. 81, 91–98 (2011).

    Article  Google Scholar 

  51. Padoa-Schioppa, C. Neurobiology of economic choice: a good-based model. Annu. Rev. Neurosci. 34, 333–359 (2011).

    Article  CAS  Google Scholar 

  52. Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

    Article  CAS  Google Scholar 

  53. Fletcher, P. C., Shallice, T. & Dolan, R. J. The functional roles of prefrontal cortex in episodic memory. I. Encoding. Brain 121, 1239–1248 1998).

    Article  Google Scholar 

  54. Bechara, A., Damasio, H., Tranel, D. & Anderson, S. W. Dissociation of working memory from decision making within the human prefrontal cortex. J. Neurosci. 18, 428–437 (1998).

    Article  CAS  Google Scholar 

  55. MacDonald, A. W. III, Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  CAS  Google Scholar 

  56. Boksem, M. A. S. & Tops, M. Mental fatigue: costs and benefits. Brain Res. Rev. 59, 125–139 (2008).

    Article  Google Scholar 

  57. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001).

    Article  CAS  Google Scholar 

  58. Falk, E. B., Elliot, T. B. & Matthew, D. L. From neural responses to population behavior: neural focus group predicts population-level media effects. Psychol. Sci. 23, 439–445 (2012).

    Article  Google Scholar 

  59. Genevsky, A Yoon, C. & Knutson, B. When brain beats behavior: neuroforecasting crowdfunding outcomes. J. Neurosc. 37, 8625–8634 2017).

    Article  CAS  Google Scholar 

  60. Camerer, C. F., Issacharoff, S., Loewenstein, G., O’Donoghue, T. & Rabin, M. Regulation for conservatives: behavioral economics and the case for ‘asymmetric paternalism’. Univ. PA Law Rev. 151, 1211–1254 (2003).

    Article  Google Scholar 

  61. Thaler, R. H. & Sunstein, C. R. Nudge: Improving Decisions About Health, Wealth, and Happiness (Penguin, London, 2009).

  62. Iyengar, S. S. & Lepper, M. R. Rethinking the value of choice: a cultural perspective on intrinsic motivation. J. Pers. Soc. Psychol. 76, 349–366 (1999).

    Article  CAS  Google Scholar 

  63. Markus, H. R. & Schwartz, B. Does choice mean freedom and well‐being? J. Consum. Res. 37, 344–355 (2010).

    Article  Google Scholar 

  64. Glimcher, P. W. in Neuroeconomics: Decision Making and the Brain (eds Glimcher, P. W., Camrer C. F., Fehr, E. & Poldrack, R. A.) Ch. 32 (Academic Press, London, 2008).

  65. Hare, T. A., Camerer, C. F. & Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324, 646–648 (2009).

    Article  CAS  Google Scholar 

  66. Gorgolewski, K. J. et al. NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the brain. Front. Neuroinform. 9, 8 (2015).

    Article  Google Scholar 

  67. Masson, M. E. & Loftus, G. R. Using confidence intervals for graphically based data interpretation. Can. J. Exp. Psychol. 57, 203–220 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Spanish Ministry of Science and Education, grants nos. ECO2011-29865 (to E.R.), SEJ2005-08391 and ECO2008-01768 (to R.N.), the German Research Council (DFG CIN) (to A.L.), Generalitat de Catalunya, and BGSE (to R.N.), the Moore Foundation (to C.F.C. and R.A.A.), the Human Frontier Science Program (to C.F.C., R.N. and E.R.), the National Institutes of Health (Conte to C.F.C. and R.A.A.), the National Science Foundation and Boswell Foundation (to R.A.A), Caltech T&C Chen Social and Decision Neuroscience Center (to C.F.C.) and Caltech T&C Chen Brain–Machine Interface Center (to R.A.A.). The funders had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript. The authors thank K. Quinn, A. Tank and A. Miro for help on previous versions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Design was carried out by E.R., R.N., A.L., C.F.C. and R.A.A., fMRI collection by A.L. and E.R., fMRI analysis by A.L. and E.R. and other data analysis by E.R., A.L. and R.N. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Axel Lindner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Methods, Supplementary References, Supplementary Figures 1–4, Supplementary Tables 1–2

Reporting Summary

Supplementary Data 1

Multi-tab Excel spreadsheet listing all inference-stats values reported in the manuscript

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reutskaja, E., Lindner, A., Nagel, R. et al. Choice overload reduces neural signatures of choice set value in dorsal striatum and anterior cingulate cortex. Nat Hum Behav 2, 925–935 (2018). https://doi.org/10.1038/s41562-018-0440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0440-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing