Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A mechanistic model of connector hubs, modularity and cognition

Abstract

The human brain network is modular—consisting of communities of tightly interconnected nodes1. This network contains local hubs, which have many connections within their own communities, and connector hubs, which have connections diversely distributed across communities2,3. A mechanistic understanding of these hubs and how they support cognition has not been demonstrated. Here, we leveraged individual differences in hub connectivity and cognition. We show that a model of hub connectivity accurately predicts the cognitive performance of 476 individuals in 4 distinct tasks. Moreover, there is a general optimal network structure for cognitive performance—individuals with diversely connected hubs and consequent modular brain networks exhibit increased cognitive performance, regardless of the task. Critically, we find evidence consistent with a mechanistic model in which connector hubs tune the connectivity of their neighbours to be more modular while allowing for task appropriate information integration across communities, which increases global modularity and cognitive performance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Functional connectivity and network science processing workflow.
Fig. 2: Hub diversity and locality, modularity and network connectivity predict cognitive performance.
Fig. 3: Connector hubs and local hubs concurrently facilitate increased modularity and task performance.
Fig. 4: Connectivity between primary sensory, motor, dorsal attention, ventral attention and cingulo-opercular communities mediates the relationship between connector hubs and modularity.

References

  1. 1.

    Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The modular and integrative functional architecture of the human brain. Proc. Natl Acad. Sci. USA 112, E6798–E6807 (2015).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bertolero, M. A., Yeo, B. T. T. & D’Esposito, M. The diverse club. Nat. Commun. 8, 1277 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Guimerà, R., Guimera, R., Amaral, L. A. N. & Amaral, L. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Meunier, D., Lambiotte, R. & Bullmore, E. T. Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bassett, D. S. et al. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput. Biol. 6, e1000748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Laughlin, S. B., de Ruyter van Steveninck, R. R. & Anderson, J. C. The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Lord, L.-D., Expert, P., Huckins, J. F. & Turkheimer, F. E. Cerebral energy metabolism and the brain’s functional network architecture: an integrative review. J. Cereb. Blood Flow Metab. 33, 1347–1354 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Raichle, M. E. & Gusnard, D. A. Appraising the brain’s energy budget. Proc. Natl Acad. Sci. USA 99, 10237–10239 (2002).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Harris, J. J. & Attwell, D. The energetics of CNS white matter. J. Neurosci. 32, 356–371 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Kuzawa, C. W. et al. Metabolic costs and evolutionary implications of human brain development. Proc. Natl Acad. Sci. USA 111, 13010–13015 (2014).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Krienen, F. M., Yeo, B. T. T., Ge, T., Buckner, R. L. & Sherwood, C. C. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc. Natl Acad. Sci. USA 113, E469–E478 (2016).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 1832–1844 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12, 204–213 (2011).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Clune, J., Mouret, J.-B. & Lipson, H. The evolutionary origins of modularity. Proc. Biol. Sci. 280, 1–9 (2013).

    Article  Google Scholar 

  15. 15.

    Kashtan, N., Kashtan., Alon, U. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Simon, H. A. in Facets of Systems Science International Federation for Systems Research International Series on Systems Science and Engineering, Vol. 7 457–476 (Springer, Boston, MA, 1991).

  17. 17.

    Fodor, J. The Modularity of Mind (MIT Press, Cambridge, MA, 1983).

  18. 18.

    Coltheart, M. Modularity and cognition. Trends Cogn. Sci. 3, 115–120 (1999).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Robinson, P. A., Henderson, J. A., Matar, E., Riley, P. & Gray, R. T. Dynamical reconnection and stability constraints on cortical network architecture. Phys. Rev. Lett. 103, 108104 (2009).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Clune, J., Mouret, J.-B. & Lipson, H. The evolutionary origins of modularity. Proc. Biol. Sci. 280, 20122863 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Tosh, C. R., Tosh, C. R., McNally, L. & McNally, L. The relative efficiency of modular and non-modular networks of different size. Proc. Biol. Sci. 282, 20142568 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Stevens, A. A., Tappon, S. C., Garg, A. & Fair, D. A. Functional brain network modularity captures inter- and intra-individual variation in working memory capacity. PLoS ONE 7, e30468 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Arnemann, K. L. et al. Functional brain network modularity predicts response to cognitive training after brain injury. Neurology 84, 1568–1574 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gallen, C. L. et al. Modular brain network organization predicts response to cognitive training in older adults. PLoS ONE. 11, e0169015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Warren, D. E. et al. Network measures predict neuropsychological outcome after brain injury. Proc. Natl Acad. Sci. USA 111, 14247–14252 (2014).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Gratton, C., Nomura, E. M., Pérez, F. & D’Esposito, M. Focal brain lesions to critical locations cause widespread disruption of the modular organization of the brain. J. Cogn. Neurosci. 24, 1275–1285 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    van den Heuvel, M. P. & Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 17, 683–696 (2013).

    Article  PubMed  Google Scholar 

  28. 28.

    Rubinov, M., Ypma, R. J. F., Watson, C. & Bullmore, E. T. Wiring cost and topological participation of the mouse brain connectome. Proc. Natl Acad. Sci. USA 112, 10032–10037 (2015).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Ferreira, F. R. M., Nogueira, M. I. & Defelipe, J. The influence of James and Darwin on Cajal and his research into the neuron theory and evolution of the nervous system. Front. Neuroanat. 8, 1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Guimera, R., Mossa, S., Turtschi, A. & Amaral, L. A. N. The worldwide air transportation network: anomalous centrality, community structure, and cities' global roles. Proc. Natl Acad. Sci. USA 102, 7794–7799 (2005).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Guimerà, R., Sales-Pardo, M. & Amaral, L. A. N. Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 3, 63–69 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. Evidence for hubs in human functional brain. Networks. 79, 798–813 (2013).

    CAS  Google Scholar 

  33. 33.

    van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33, 14489–14500 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Scholtens, L. H., Schmidt, R., de Reus, M. A. & van den Heuvel, M. P. Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J. Neurosci. 34, 12192–12205 (2014).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Yeo, B. T. T. et al. Functional specialization and flexibility in human association cortex. Cereb. Cortex 25, 3654–3672 (2015).

    Article  PubMed  Google Scholar 

  37. 37.

    Bassett, D. S., Yang, M., Wymbs, N. F. & Grafton, S. T. Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18, 744–751 (2015).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Spadone, S. et al. Dynamic reorganization of human resting-state networks during visuospatial attention. Proc. Natl Acad. Sci. USA 112, 8112–8117 (2015).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Gratton, C., Laumann, T. O., Gordon, E. M., Adeyemo, B. & Petersen, S. E. Evidence for two independent factors that modify brain networks to meet task goals. Cell Rep. 17, 1276–1288 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yamashita, M., Kawato, M. & Imamizu, H. Predicting learning plateau of working memory from whole-brain intrinsic network connectivity patterns. Sci. Rep. 5, 7622 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Baldassarre, A. et al. Individual variability in functional connectivity predicts performance of a perceptual task. Proc. Natl Acad. Sci. USA 109, 3516–3521 (2012).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Sala-Llonch, R. et al. Brain connectivity during resting state and subsequent working memory task predicts behavioural performance. Cortex 48, 1187–1196 (2012).

    Article  PubMed  Google Scholar 

  43. 43.

    Sadaghiani, S., Poline, J.-B., Kleinschmidt, A. & D’Esposito, M. Ongoing dynamics in large-scale functional connectivity predict perception. Proc. Natl Acad. Sci. USA 112, 8463–8468 (2015).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Shine, J. M. et al. The dynamics of functional brain networks: integrated network states during cognitive task performance. Neuron 92, 544–554 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lerman, C. et al. Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry 71, 523–530 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Smith, S. M. et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 74, 47–14 (2012).

    Google Scholar 

  51. 51.

    Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S. & Petersen, S. E. Intrinsic and task-evoked network architectures of the human.Brain 83, 238–251 (2014).

    CAS  Google Scholar 

  53. 53.

    Siegel, J. S., Mitra, A., Laumann, T. O. & Seitzman, B. A. Data quality influences observed links between functional connectivity and behavior. Cereb. Cortex 27, 4492–4502 (2016).

    Google Scholar 

  54. 54.

    Gu, S., Satterthwaite, T. D. & Medaglia, J. D. Emergence of system roles in normative neurodevelopment. Proc. Natl Acad. Sci. USA 112, 13681–13686 (2015).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Zalesky, A., Fornito, A. & Bullmore, E. On the use of correlation as a measure of network connectivity. NeuroImage 60, 2096–2106 (2012).

    Article  PubMed  Google Scholar 

  56. 56.

    Rosvall, M., Rosvall, M., Bergstrom, C. T. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl Acad. Sci. USA 105, 1118–1123 (2008).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Brandes, U., Delling, D. & Gaertler, M. On modularity clustering. IEEE Trans. Knowl. Data Eng. 20, 172–188 (2008).

    Article  Google Scholar 

  58. 58.

    Lancichinetti, A. & Fortunato, S. Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117–11 (2009).

    Article  CAS  Google Scholar 

  59. 59.

    Berenstein, A. J., Piñero, J., Furlong, L. I. & Chernomoretz, A. Mining the modular structure of protein interaction networks. PLoS ONE 10, e0122477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Clauset, A., Newman, M. & Moore, C. Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).

    Article  CAS  Google Scholar 

  61. 61.

    Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008 (2008).

    Article  Google Scholar 

  62. 62.

    WU-Minn HCP 1200 Subjects Data Release Reference Manual (Human Connectome Project, 2018); https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf

  63. 63.

    Shen, X. et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 12, 506–518 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) grant numbers NS79698 and the National Science Foundation Graduate Research Fellowship Program under grant number DGE 1106400 to M.A.B. and M.D. M.A.B. also acknowledges NIH T32 Ruth L. Kirschstein Institutional National Research Service Award (5T32MH106442-02). B.T.T.Y. was also supported by Singapore MOE Tier 2 (MOE2014-T2-2-016), NUS Strategic Research (DPRT/944/09/14), NUS SOM Aspiration Fund (R185000271720), Singapore NMRC (CBRG/0088/2015), NUS YIA and the Singapore National Research Foundation Fellowship (Class of 2017). D.S.B. also acknowledges support from the John D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foundation, the Army Research Laboratory and the Army Research Office through contract numbers W911NF-10-2-0022 and W911NF-14-1-0679, the NIH (2-R01-DC-009209-11,1R01HD086888-01, R01-MH107235, R01-MH107703 and R21-M MH-106799), the Office of Naval Research and the National Science Foundation (BCS-1441502, PHY-1554488 and BCS-1631550). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

M.A.B. conceived the analyses. M.A.B., B.T.T.Y., D.S.B. and M.D. collaboratively designed the analyses. M.A.B. executed the analyses. M.A.B., B.T.T.Y., D.S.B. and M.D. collaboratively wrote the paper.

Corresponding author

Correspondence to Maxwell A. Bertolero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bertolero, M.A., Yeo, B.T.T., Bassett, D.S. et al. A mechanistic model of connector hubs, modularity and cognition. Nat Hum Behav 2, 765–777 (2018). https://doi.org/10.1038/s41562-018-0420-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing