Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modelling the N400 brain potential as change in a probabilistic representation of meaning


The N400 component of the event-related brain potential has aroused much interest because it is thought to provide an online measure of meaning processing in the brain. However, the underlying process remains incompletely understood and actively debated. Here we present a computationally explicit account of this process and the emerging representation of sentence meaning. We simulate N400 amplitudes as the change induced by an incoming stimulus in an implicit and probabilistic representation of meaning captured by the hidden unit activation pattern in a neural network model of sentence comprehension, and we propose that the process underlying the N400 also drives implicit learning in the network. The model provides a unified account of 16 distinct findings from the N400 literature and connects human language comprehension with recent deep learning approaches to language processing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The sentence gestalt (SG) model architecture, processing a sentence with a high- or low-cloze probability ending, and the model’s N400 correlate.
Fig. 2: Simulation results for the basic effects.
Fig. 3: Simulation results concerning the specificity of the N400 effect.
Fig. 4: Development across training.
Fig. 5: Comprehension performance and semantic update effects at a very early stage in training.
Fig. 6: Simulation of the interaction between delayed repetition and semantic incongruity.
Fig. 7: Simulation results from a simple recurrent network (SRN) model trained to predict the next word based on preceding context.


  1. 1.

    Kutas, M. & Hillyard, S. A. Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207, 203–205 (1980).

    CAS  PubMed  Google Scholar 

  2. 2.

    Kutas, M. & Federmeier, K. D. Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu. Rev. Psychol. 62, 621–647 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lau, E. F., Phillips, C. & Poeppel, D. A cortical network for semantics: (de)constructing the N400. Nat. Rev. Neurosci. 9, 920–933 (2008).

    CAS  PubMed  Google Scholar 

  4. 4.

    Debruille, J. B. The N400 potential could index a semantic inhibition. Brain Res. Rev. 56, 472–477 (2007).

    PubMed  Google Scholar 

  5. 5.

    Federmeier, K. D. & Laszlo, S. in The Psychology of Learning and Motivation–Advances in Research and Theory Vol. 51, 1–44 (2009).

  6. 6.

    Baggio, G. & Hagoort, P. The balance between memory and unification in semantics: a dynamic account of the N400. Lang. Cogn. Process. 26, 1338–1367 (2011).

    Google Scholar 

  7. 7.

    Brown, C. & Hagoort, P. The processing nature of the N400: evidence from masked priming. J. Cogn. Neurosci. 5, 34–44 (1993).

    CAS  PubMed  Google Scholar 

  8. 8.

    Chomsky, N. Syntactic Structures (Mouton, 1957).

  9. 9.

    Fodor, J. Modularity of Mind (MIT Press, 1981).

  10. 10.

    Fodor, J. & Pylyshyn, Z. W. Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3–71 (1988).

    CAS  Google Scholar 

  11. 11.

    Jackendoff, R. Foundations of Language: Brain, Meaning, Grammar, Evolution (Oxford Univ. Press, Oxford, 2002).

  12. 12.

    McClelland, J. L., St. John, M. F. & Taraban, R. Sentence comprehension: a parallel distributed processing approach. Lang. Cogn. Process. 4, 287–336 (1989).

    Google Scholar 

  13. 13.

    St John, M. F. & McClelland, J. L. Learning and applying contextual constraints in sentence comprehension. Artif. Intell. 46, 217–257 (1990).

    Google Scholar 

  14. 14.

    Laszlo, S. & Plaut, D. C. A neurally plausible Parallel Distributed Processing model of Event-Related Potential word reading data. Brain Lang. 120, 271–281 (2012).

    PubMed  Google Scholar 

  15. 15.

    Laszlo, S. & Armstrong, B. C. PSPs and ERPs: applying the dynamics of post-synaptic potentials to individual units in simulation of temporally extended Event-Related Potential reading data. Brain Lang. 132, 22–27 (2014).

    PubMed  Google Scholar 

  16. 16.

    Cheyette, S. J. & Plaut, D. C. Modeling the N400 ERP component as transient semantic over-activation within a neural network model of word comprehension. Cognition 162, 153–166 (2017).

    PubMed  Google Scholar 

  17. 17.

    Itti, L. & Baldi, P. Bayesian surprise attracts human attention. Vis. Res. 49, 1295–1306 (2009).

    PubMed  Google Scholar 

  18. 18.

    Griffiths, T. L., Stevyers, M. & Tenenbaum, J. B. Topics in semantic representation. Psychol. Rev. 114, 211–244 (2007).

    PubMed  Google Scholar 

  19. 19.

    Andrews, M., Vigliocco, G. & Vinson, D. Integrating experiential and distributional data to learn semantic representations. Psychol. Rev. 116, 463–498 (2009).

    PubMed  Google Scholar 

  20. 20.

    Wu, Y. et al. Google’s neural machine translation system: bridging the gap between human and machine translation. Preprint at (2016).

  21. 21.

    Seidenberg, M. S. & McClelland, J. L. A distributed, developmental model of word recognition and naming. Psychol. Rev. 96, 523–568 (1989).

    CAS  PubMed  Google Scholar 

  22. 22.

    McClelland, J. L. in The Handbook of Language Emergence (eds. MacWhinney, B. & O’Grady, W.) 54–80 (Wiley, New York, NY, 2015).

  23. 23.

    Barsalou, L. W. Grounded cognition. Annu. Rev. Psychol. 59, 617–645 (2008).

    PubMed  Google Scholar 

  24. 24.

    Pulvermüller, F. Words in the brain’s language. Behav. Brain Sci. 22, 253–336 (1999).

  25. 25.

    Kutas, M. & Hillyard, S. A. Brain potentials during reading reflect word expectancy and semantic association. Nature 307, 101–103 (1984).

    Google Scholar 

  26. 26.

    Van Petten, C. & Kutas, M. Influences of semantic and syntactic context on open- and closed-class words. Mem. Cogn. 19, 95–112 (1991).

    Google Scholar 

  27. 27.

    Levy, R. Expectation-based syntactic comprehension. Cognition 106, 1126–1177 (2008).

    PubMed  Google Scholar 

  28. 28.

    Frank, S. L., Galli, G. & Vigliocco, G. The ERP response to the amount of information conveyed by words in sentences. Brain Lang. 140, 1–25 (2015).

    PubMed  Google Scholar 

  29. 29.

    Federmeier, K. D. & Kutas, M. A rose by any other name: long-term memory structure and sentence processing. J. Mem. Lang. 41, 469–495 (1999).

    Google Scholar 

  30. 30.

    Hagoort, P., Baggio, G. & Willems, R. M. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 819–836 (MIT, Cambridge, MA, 2009).

  31. 31.

    Barber, H., Vergara, M. & Carreiras, M. Syllable-frequency effects in visual word recognition: evidence from ERPs. Neuroreport 15, 545–548 (2004).

    PubMed  Google Scholar 

  32. 32.

    Koivisto, M. & Revonsuo, A. Cognitive representations underlying the N400 priming effect. Cogn. Brain Res. 12, 487–490 (2001).

    CAS  Google Scholar 

  33. 33.

    Rugg, M. D. The effects of semantic priming and word repetition on event-related potentials. Psychophysiology 22, 642–647 (1985).

    CAS  PubMed  Google Scholar 

  34. 34.

    Kuperberg, G. R., Sitnikova, T., Caplan, D. & Holcomb, P. J. Electrophysiological distinctions in processing conceptual relationships within simple sentences. Cogn. Brain Res. 17, 117–129 (2003).

    Google Scholar 

  35. 35.

    Kim, A. & Osterhout, L. The independence of combinatory semantic processing: evidence from event-related potentials. J. Mem. Lang. 52, 205–225 (2005).

    Google Scholar 

  36. 36.

    Brouwer, H., Crocker, M. W., Venhuizen, N. J. & Hoeks, J. C. J. A neurocomputational model of the N400 and the P600 in language processing. Cogn. Sci. 41, 1318–1352 (2017).

    PubMed  Google Scholar 

  37. 37.

    Van Herten, M., Kolk, H. H. J. & Chwilla, D. J. An ERP study of P600 effects elicited by semantic anomalies. Cogn. Brain Res. 22, 241–255 (2005).

    Google Scholar 

  38. 38.

    Hagoort, P. & Brown, C. M. ERP effects of listening to speech compared to reading: the P600 / SPS to syntactic violations in spoken sentences and rapid serial visual presentation. Neuropsychologia 38, 1531–1549 (2000).

    CAS  PubMed  Google Scholar 

  39. 39.

    Federmeier, K. D., Wlotko, E. W., De Ochoa-Dewald, E. & Kutas, M. Multiple effects of sentential constraint on word processing. Brain Res. 1146, 75–84 (2007).

    CAS  PubMed  Google Scholar 

  40. 40.

    Friedrich, M. & Friederici, A. D. N400-like semantic incongruity effect in 19-month-olds: processing known words in picture contexts. J. Cogn. Neurosci. 16, 1465–1477 (2004).

    PubMed  Google Scholar 

  41. 41.

    Atchley, R. A. et al. A comparison of semantic and syntactic event related potentials generated by children and adults. Brain Lang. 99, 236–246 (2006).

    PubMed  Google Scholar 

  42. 42.

    Kutas, M. & Iragui, V. The N400 in a semantic categorization task across 6 decades. Electroencephalogr. Clin. Neurophysiol. 108, 456–471 (1998).

    CAS  PubMed  Google Scholar 

  43. 43.

    Gotts, S. J. Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression. Psychon. Bull. Rev. 23, 1055–1071 (2016).

    PubMed  Google Scholar 

  44. 44.

    McLaughlin, J., Osterhout, L. & Kim, A. Neural correlates of second-language word learning: minimal instruction produces rapid change. Nat. Neurosci. 7, 703–704 (2004).

    CAS  PubMed  Google Scholar 

  45. 45.

    Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  Google Scholar 

  46. 46.

    Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. Lond. 360, 815–836 (2005).

    Google Scholar 

  47. 47.

    McClelland, J. L. in International Perspectives on Psychological Science (eds Bertelson, P, Eelen, P. & d’Ydewalle, G.) Vol. 1, 57–88 (Lawrence Erlbaum Associates, Hillsdale, 1994).

  48. 48.

    Besson, M., Kutas, M. & Van Petten, C. An Event-Related Potential (ERP) analysis of semantic congruity and repetition effects in sentences. J. Cogn. Neurosci. 4, 132–149 (1992).

    CAS  PubMed  Google Scholar 

  49. 49.

    Rabovsky, M. & McRae, K. Simulating the N400 ERP component as semantic network error: insights from a feature-based connectionist attractor model of word meaning. Cognition 132, 68–89 (2014).

    PubMed  Google Scholar 

  50. 50.

    Kuperberg, G. R. Separate streams or probabilistic inference? What the N400 can tell us about the comprehension of events. Lang. Cogn. Neurosci. 31, 602–616 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Schott, B., Richardson-Klavehn, A., Heinze, H.-J. & Düzel, E. Perceptual priming versus explicit memory: dissociable neural correlates at encoding. J. Cogn. Neurosci. 14, 578–592 (2002).

    PubMed  Google Scholar 

  52. 52.

    Rumelhart, D. E. in Metaphor and Thought (ed. Ortony, A.) 71–82 (Cambridge Univ. Press, Cambridge, UK, 1979).

  53. 53.

    McCarthy, G., Nobre, A. C., Bentin, S. & Spencer, D. D. Language-related field potentials in the anterior–medial temporal lobe: I. Intracranial distribution and neural generators. J. Neurosci. 15, 1080–1089 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Nobre, A. C. & McCarthy, G. Language-related field potentials in the anterior–medial temporal lobe: II. Effects of word type and semantic priming. J. Neurosci. 15, 1090–1098 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Sanford, A. J. & Sturt, P. Depth of processing in language comprehension: not noticing the evidence. Trends Cogn. Sci. 6, 382–386 (2002).

    PubMed  Google Scholar 

  56. 56.

    Ferreira, F., Bailey, K. G. D. & Ferraro, V. Good-enough representations in language comprehension. Curr. Dir. Psychol. Sci. 11, 11–15 (2002).

    Google Scholar 

  57. 57.

    Dronkers, N. F. et al. Lesion analysis of the brain areas involved in language comprehension. Cognition 92, 145–177 (2004).

    PubMed  Google Scholar 

  58. 58.

    Turken, A. U. & Dronkers, N. F. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front. Syst. Neurosci. 5, 1–20 (2011).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bookheimer, S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu. Rev. Neurosci. 25, 151–188 (2002).

    CAS  PubMed  Google Scholar 

  60. 60.

    Friederici, A. D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6, 78–84 (2002).

    PubMed  Google Scholar 

  61. 61.

    Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl Acad. Sci. USA 94, 14792–14797 (1997).

    CAS  PubMed  Google Scholar 

  62. 62.

    Clayards, M., Tanenhaus, M. K., Aslin, R. N. & Jacobs, R. A. Perception of speech reflects optimal use of probabilistic speech cues. Cognition 108, 804–809 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Van Petten, C., Coulson, S., Rubin, S., Plante, E. & Parks, M. Time course of word identification and semantic integration in spoken language. J. Exp. Psychol. Learn. Mem. Cogn. 25, 394–417 (1999).

    PubMed  Google Scholar 

  64. 64.

    van den Brink, D., Brown, C. M. & Hagoort, P. The cascaded nature of lexical selection and integration in auditory sentence processing. J. Exp. Psychol. Learn. Mem. Cogn. 32, 364–372 (2006).

    PubMed  Google Scholar 

  65. 65.

    Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature 2, 79–87 (1999).

    CAS  Google Scholar 

  66. 66.

    Hoeks, J. C. J., Stowe, L. A. & Doedens, G. Seeing words in context: the interaction of lexical and sentence level information during reading. Cogn. Brain Res. 19, 59–73 (2004).

    Google Scholar 

  67. 67.

    Osterhout, L. & Holcomb, P. J. Event-related brain potentials elicited by syntactic anomaly. J. Mem. Lang. 31, 785–806 (1992).

    Google Scholar 

  68. 68.

    Regel, S., Gunter, T. C. & Friederici, A. D. Isn’t it ironic? An electrophysiological exploration of figurative language processing. J. Cogn. Neurosci. 23, 277–293 (2010).

    PubMed  Google Scholar 

  69. 69.

    Coulson, S., King, J. W. & Kutas, M. Expect the unexpected: event-related brain response to morphosyntactic violations. Lang. Cogn. Process. 13, 21–58 (1998).

    Google Scholar 

  70. 70.

    Sassenhagen, J., Schlesewsky, M. & Bornkessel-Schlesewsky, I. The P600-as-P3 hypothesis revisited: single-trial analyses reveal that the late EEG positivity following linguistically deviant material is reaction time aligned. Brain Lang. 137, 29–39 (2014).

    PubMed  Google Scholar 

  71. 71.

    Polich, J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148 (2007).

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Schacht, A., Sommer, W., Shmuilovich, O., Casado Martinez, P. & Martin-Loeches, M. Differential task effects on N400 and P600 elicited by semantic and syntactic violations. PLoS One 9, 1–7 (2014).

    Google Scholar 

  73. 73.

    Luck, S. J., Vogel, E. K. & Shapiro, K. L. Word meanings can be accessed but not reported during the attentional blink. Nature 383, 616–618 (1996).

    CAS  PubMed  Google Scholar 

  74. 74.

    Fischler, I., Bloom, P. A., Childers, D. G., Roucos, S. E. & Perry, N. W. Brain potentials related to stages of sentence verification. Psychophysiology 20, 400–409 (1983).

    CAS  PubMed  Google Scholar 

  75. 75.

    Nieuwland, M. S. & Kuperberg, G. R. When the truth is not too hard to handle. Psychol. Sci. 19, 1213–1218 (2008).

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Staab, J., Urbach, T. & Kutas, M. Negation processing in context is not (always) delayed. Cent. Res. Lang. Tech. Rep. 20, 3–34 (2009).

    Google Scholar 

  77. 77.

    van Berkum, J. J., Hagoort, P. & Brown, C. M. Semantic integration in sentences and discourse: evidence from the N400. J. Cogn. Neurosci. 11, 657–671 (1999).

    PubMed  Google Scholar 

  78. 78.

    Nieuwland, M. S. & Van Berkum, J. Ja When peanuts fall in love: N400 evidence for the power of discourse. J. Cogn. Neurosci. 18, 1098–1111 (2006).

    PubMed  Google Scholar 

  79. 79.

    McCandliss, B. D., Cohen, L. & Dehaene, S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 (2003).

    PubMed  Google Scholar 

  80. 80.

    Rumelhart, D. E. & Todd, P. M. in Attention and Performance XIV 3–30 (MIT, Cambridge, MA, 1993).

  81. 81.

    McClelland, J. L. & Rogers, T. T. The parallel distributed processing approach to semantic cognition. Nat. Rev. Neurosci. 4, 310–322 (2003).

    CAS  PubMed  Google Scholar 

  82. 82.

    Pennington, J., Socher, R. & Manning, C. in Proc. 2014 Conf. Empiric. Methods Natur. Lang. Process. (EMNLP) 1532–1543 (Association for Computational Linguistics, 2014).

  83. 83.

    Altmann, G. T. M. & Kamide, Y. Incremental interpretation at verbs: restricting the domain of subsequent reference. Cognition 73, 247–264 (1999).

    CAS  PubMed  Google Scholar 

  84. 84.

    Kamide, Y., Altmann, G. T. M. & Haywood, S. L. The time-course of prediction in incremental sentence processing: evidence from anticipatory eye movements. Mem. Lang. 49, 133–156 (2003).

    Google Scholar 

Download references


This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 658999 to M.R. We thank R. Levy, S. Frank and the members of the PDP lab at Stanford University for helpful discussion. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information




M.R. developed the idea for the project, including the idea of linking the N400 to the updating of SG layer activation in the model. S.S.H. re-implemented the model for the current simulations. M.R. and J.L.M. formulated the training environment. J.L.M. formulated the new learning rule and developed the probabilistic formulation of the model with input from M.R. M.R. adjusted the model implementation, implemented the training environment, formulated and implemented the simulations, trained the networks and conducted the simulations, and performed the analyses with input from J.L.M. J.L.M. and M.R. discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Milena Rabovsky or James L. McClelland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Table 1, Supplementary Notes 1–7, Supplementary Methods 1–4, Supplementary Discussion, Supplementary References

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rabovsky, M., Hansen, S.S. & McClelland, J.L. Modelling the N400 brain potential as change in a probabilistic representation of meaning. Nat Hum Behav 2, 693–705 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing