Perspective | Published:

Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens

Nature Human Behaviourvolume 2pages542550 (2018) | Download Citation


Definitions of our species as unique within the hominin clade have tended to focus on differences in capacities for symbolism, language, social networking, technological competence and cognitive development. More recently, however, attention has been turned towards humans’ unique ecological plasticity. Here, we critically review the growing archaeological and palaeoenvironmental datasets relating to the Middle–Late Pleistocene (300–12 thousand years ago) dispersal of our species within and beyond Africa. We argue, based on comparison with the available information for other members of the genus Homo, that our species developed a new ecological niche, that of the ‘generalist specialist’. Not only did it occupy and utilize a diversity of environments, but it also specialized in its adaptation to some of these environmental extremes. Understanding this ecological niche provides a framework for discussing what it means to be human and how our species became the last surviving hominin on the planet.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Hublin, J. J. et al. New fossils from Jebel Urhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

  2. 2.

    Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).

  3. 3.

    Wadley, L., Hodgkiss, T. & Grant, M. Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age. Proc. Natl Acad. Sci. USA 106, 9590–9594 (2009).

  4. 4.

    Conard, N.J. Cultural modernity: consensus or conundrum? Proc. Natl Acad. Sci. USA 107, 7621–7622 (2010).

  5. 5.

    Shea, J. J. & Sisk, M. L. Complex projectile technology and Homo sapiens dispersal from Africa to Western Eurasia. Paleoanthropology 2010, 100–122 (2010).

  6. 6.

    Mackay, A., Stewart, B. A. & Chase, B. M. Coalescence and fragmentation in the Late Pleistocene archaeology of southernmost Africa. J. Hum. Evol. 72, 26–51 (2014).

  7. 7.

    Dunbar, R. Evolution of the social brain. Science 302, 1160–1161 (2003).

  8. 8.

    Henshilwood, C. S. & Dubreuil, B. The Still Bay and Howiesons Poort, 77–59 ka: symbolic material culture and the evolution of the mind during the African Middle Stone Age. Curr. Anthropol. 52, 361–400 (2011).

  9. 9.

    Roberts, P. ‘We have never been behaviourally modern’: the implications of material engagement theory and metaplasticity for understanding the Late Pleistocene record of human behaviour. Quat. Int. 405, 8–20 (2016).

  10. 10.

    Gamble, C. Timewalkers: The Prehistory of Global Colonization (Alan Sutton Press, Stroud, 1993).

  11. 11.

    Gamble, C. Settling the Earth: The Archaeology of Deep Human History (Cambridge Univ. Press, Cambridge, 2013).

  12. 12.

    Stringer, C. B. et al. Neanderthal exploitation of marine mammals in Gibraltar. Proc. Natl Acad. Sci. USA 105, 14319–14324 (2008).

  13. 13.

    Macdonald, K., Roebroeks, W. & Verpoorte, A. in The Evolution of Hominid Diets: Integrating Approaches to the Study of Palaeolithic Subsistence (eds Hublin, J. J. & Richards, M.) 211–220 (Springer, Dordrecht, 2009).

  14. 14.

    Banks, W. E. et al. Neanderthal extinction by competitive exclusions. PLoS ONE 3, e3972 (2008).

  15. 15.

    Bird, M., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the last glacial period: a savanna corridor in Sundaland? Quat. Sci. Rev. 24, 2228–2242 (2005).

  16. 16.

    Mellars, P. Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proc. Natl Acad. Sci. USA 103, 9381–9386 (2006).

  17. 17.

    Boivin, N., Fuller, D. Q., Dennell, R., Allaby, R. & Petraglia, M. D. Human dispersal across diverse environments of Asia during the Upper Pleistocene. Quat. Int. 300, 32–47 (2013).

  18. 18.

    Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).

  19. 19.

    Jones, S. C. & Stewart, B. A. Africa from MIS 6-2: Population Dynamics and Paleoenvironments (Springer, Dordrecht, 2016).

  20. 20.

    Elton, S. The environmental context of human evolutionary history in Eurasia and Africa. J. Anat. 212, 377–393 (2008).

  21. 21.

    Rabett, R. J. Human Adaptation in the Asian Palaeolithic (Cambridge Univ. Press, Cambridge, 2012). .

  22. 22.

    Stewart, B. A. et al. Afromontane foragers of the Late Pleistocene: site formation, chronology and occupational pulsing at Melikane Rockshelter Lesotho. Quat. Int. 270, 40–60 (2012).

  23. 23.

    Roberts, P., Boivin, N., Lee-Thorp, J., Petraglia, M. & Stock, J. Tropical forests and the genus Homo. Evol. Anthropol. 25, 306–317 (2016).

  24. 24.

    Groucutt, H. S. & Petraglia, M. D. The prehistory of the Arabian Peninsula: deserts, dispersals, and demography. Evol. Anthropol. 21, 113–125 (2012).

  25. 25.

    Blinkhorn, J., Achyuthan, H., Ditchfield, P. & Petraglia, M. Palaeoenvironmental dynamics and Palaeolithic occupation at Katoati, Thar Desert, India. Quat. Res. 87, 298–313 (2017).

  26. 26.

    Beall, C. M. Human adaptability studies at high altitude: research designs and major concepts during fifty years of discovery. Am. J. Hum. Biol. 25, 141–147 (2013).

  27. 27.

    Pitulko, V. V. et al. Early human presence in the Arctic: evidence from 45,000-year-old mammoth remains. Science 351, 260–263 (2016).

  28. 28.

    Gabunia, L. et al. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288, 1019–1025 (2000).

  29. 29.

    Falguères, C. et al. Earliest humans in Europe: the age of TD6 Gran Dolina, Atapuerca, Spain. J. Hum. Evol. 37, 343–352 (1999).

  30. 30.

    Zhu, R. X. et al. Early evidence of the genus Homo in East Asia. J. Hum. Evol. 55, 1075–1085 (2008).

  31. 31.

    Parfitt, S. A. et al. Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe. Nature 466, 229–233 (2010).

  32. 32.

    Martínez-Navarro, B. in Human Palaeoecology in the Levantine Corridor (eds Goren-Inbar, N. & Speth, J. D.) 37–51 (Oxbow Books, Oxford, 2004).

  33. 33.

    Dennell, R. W. & Roebroeks, W. Out of Africa: an Asian perspective on early human dispersal from Africa. Nature 438, 1099–1104 (2005).

  34. 34.

    Tappen, M., Lordkipanidze, D., Bukshianidze, M., Vekua, A. & Ferring, R. in Breathing Life into Fossils: Taphonomic Studies in Honor of C. K. (Bob) Brain (eds Pickering, T. R. & Schick, K.) 119–135 (Stone Age Institute Press, Bloomington, IN, 2007).

  35. 35.

    Rodríguez, J. et al. One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain). Quat. Sci. Rev. 30, 1396–1412 (2011).

  36. 36.

    Sémah, A.-M. & Sémah, F. The rain forest in Java through the Quaternary and its relationships with humans (adaptation, exploitation and impact on the forest). Quat. Int. 249, 120–128 (2012).

  37. 37.

    Sémah, F., Sémah, A.-M. & Simanjuntak, T. in Under the Canopy: the Archaeology of Tropical Rain Forests (ed. Mercader, J.) 161–90 (Rutgers Univ. Press, Piscataway, NJ, 2002).

  38. 38.

    de Vos, J., Sondaar, P. Y., van den Bergh, G. D. & Aziz, F. The Homo bearing deposits of Java and its ecological context. Cour. Forsch. Senck. 171, 129–140 (1994).

  39. 39.

    Larick, R. et al. Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia. Proc. Natl Acad. Sci. USA 98, 4866–4871 (2001).

  40. 40.

    Zaim, Y. et al. New 1.5 million-year-old Homo erectus maxilla from Sangiran (Central Java, Indonesia). J. Hum. Evol. 61, 363–376 (2011).

  41. 41.

    Van den Bergh, G. D. et al. Homo floresiensis-like fossils from the early middle Pleistocene of Flores. Nature 534, 245–248 (2016).

  42. 42.

    Marwick, B. Biogeography of middle Pleistocene hominins in mainland Southeast Asia: a review of current evidence. Quat. Int. 202, 51–58 (2009).

  43. 43.

    Brumm, A. et al. Stone technology at the middle Pleistocene site of Mata Menge, Flores, Indonesia. J. Archaeol. Sci. 37, 451–473 (2010).

  44. 44.

    Green, R. E. et al. A draft sequence of the Neanderthal genome. Science 328, 710–722 (2010).

  45. 45.

    Stringer, C. & Gamble, C. In Search of the Neanderthals: Solving the Puzzle of Human Origins (Thames and Hudson, London, 1993).

  46. 46.

    de Azevedo, S. et al. Nasal airflow simulations suggest convergent adaptation in Neanderthals and modern humans. Proc. Natl Acad. Sci. USA 114, 12442–12447 (2017).

  47. 47.

    Bocherens, H., Drucker, D. G., Billiou, D., Patou-Mathis, M. & Vandermeersch, B. Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. J. Hum. Evol. 49, 71–87 (2005).

  48. 48.

    Brown, K., Fa, D. A., Finlayson, G. & Finalyson, C. in Trekking the Shores: Changing Coastlines and the Antiquity of Coastal Settlement (ed. Bicho, N. F.) 247–272 (Interdisciplinary Contributions to Archaeology, Springer Science, Dordrecht, 2011).

  49. 49.

    Henry, A. G., Brooks, A. S. & Piperno, D. R. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc. Natl Acad. Sci. USA 108, 486–491 (2011).

  50. 50.

    Stewart, J. R. The ecology and adaptation of Neanderthals during the non-analogue environment of Oxygen Isotope Stage 3. Quat. Int. 137, 35–46 (2005).

  51. 51.

    Rae, T. C., Koppe, T. & Stringer, C. B. The Neanderthal face is not cold adapted. J. Hum. Evol. 60, 234–239 (2011).

  52. 52.

    Skrzypek, G., Wiśniewski, A. & Grierson, P. F. How cold was it for Neanderthals moving to Central Europe during warm phases of the last glaciation. Quat. Sci. Rev. 30, 481–487 (2011).

  53. 53.

    Burjachs, F. et al. Palaeoecology of Neanderthals during Dansgaard–Oeschger cycles in northeastern Iberia (Abric Romani): from regional to global scale. Quat. Int. 247, 26–37 (2012).

  54. 54.

    Slimak, L. et al. Late Mousterian persistence near the Arctic Circle. Science 332, 841–845 (2011).

  55. 55.

    Slimak, L. et al. Response to “Comment on Late Mousterian persistence near the Arctic Circle”. Science 335, 167 (2012).

  56. 56.

    Groucutt, H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015).

  57. 57.

    Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 3659, 456–459 (2018).

  58. 58.

    Clark, J. D. et al. Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 747–752 (2003).

  59. 59.

    Vaks, A. et al. Desert speleothems reveal climatic window for African exodus of early modern humans. Geology 35, 831–834 (2007).

  60. 60.

    Blome, M. W., Cohen, A. S., Tryon, C. A., Brooks, A. S. & Russell, J. The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000–30,000 years ago. J. Hum. Evol. 62, 563–592 (2012).

  61. 61.

    Scerri, E. M. L. et al. Middle to Late Pleistocene human habitation in the western Nefud Desert, Saudi Arabia. Quat. Int. 382, 200–214 (2015).

  62. 62.

    Groucutt, H. S. et al. Homo sapiens in Arabia by 85,000 years ago. Nat. Ecol. Evol. 2, 800–809 (2018).

  63. 63.

    Blinkhorn, J., Achyuthan, H., Petragliam, M. & Ditchfield, P. Middle Palaeolithic occupation in the Thar Desert during the Upper Pleistocene the signature of a modern human exit out of Africa? Quat. Sci. Rev. 77, 233–238 (2013).

  64. 64.

    Rosenberg, T. M. et al. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39, 1115–1118 (2011).

  65. 65.

    Breeze, P. S. et al. Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites. Quat. Int. 382, 98–119 (2015).

  66. 66.

    Blinkhorn, J., Achyuthan, H. & Petraglia, M. D. Ostrich expansion into India during the late Pleistocene: implications for continental dispersal corridors. Palaeogeogr. Palaeoclim. Palaeoecol. 417, 80–90 (2015).

  67. 67.

    Stewart, M. et al. Middle and Late Pleistocene mammal fossils of Arabia and surrounding regions: implications for biogeography and hominin dispersals. Quat. Int. (2017).

  68. 68.

    Hiscock, P. & Wallis, L. A. in Desert Peoples: Archaeological Perspectives (eds Veth, P., Smith, M. & Hiscock, P.) Ch. 3 (Blackwell Publishing, Oxford, 2005).

  69. 69.

    Lorenzo, F. R. et al. A genetic mechanism for Tibetan high-altitude adaptation. Nat. Genet. 46, 951–956 (2014).

  70. 70.

    Barton, L. The cultural context of biological adaptation to high elevation Tibet. Archaeol. Res. Asia 5, 4–11 (2016).

  71. 71.

    Huerta-Sánchez, E. et al. Altitude adaptation in Tibet caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

  72. 72.

    Samlararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1241–1247 (2016).

  73. 73.

    Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75 (2010).

  74. 74.

    Jeong, C. et al. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat. Commun. 5, 3281 (2014).

  75. 75.

    Meyer, M. C. et al. Permanent human occupation of central Tibetan Plateau in the early Holocene. Science 355, 64–67 (2017).

  76. 76.

    Brantingham, P. J. & Xing, G. Peopling of the northern Tibetan Plateau. World Archaeol. 38, 387–414 (2006).

  77. 77.

    Yuan, B., Huang, W. & Dian Zhang, D. New evidence for human occupation of the northern Tibetan Plateau, China during the Late Pleistocene.Chin. Sci. Bull. 52, 2675–2679 (2007).

  78. 78.

    Qi, X. et al. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the Tibetan Plateau. Mol. Biol. Evol. 30, 1761–1778 (2013).

  79. 79.

    Rademaker, K. et al. Paleoindian settlement of the high-altitude Peruvian Andes. Science 346, 466–469 (2014).

  80. 80.

    Tarasov, P. E. et al. Last glacial vegetation reconstructions in the extreme-continental eastern Asia: potentials of pollen and n-alkane biomarker analyses. Quat. Int. 290–291, 253–263 (2013).

  81. 81.

    Pavlov, P., Svendsen, J. I. & Indrelid, S. Human presence in the European Arctic nearly 40,000 years ago. Nature 413, 64–67 (2001).

  82. 82.

    Nikolskiy, V. & Pitulko, V. Evidence from the Yana Palaeolithic site, Arctic Siberia, yields clues to the riddle of mammoth hunting. J. Archaeol. Sci. 40, 4189–4197 (2013).

  83. 83.

    Goebel, T. Pleistocene human colonization of Siberia and peopling of the Americas: an ecological approach. Evol. Anthropol. 8, 208–227 (1999).

  84. 84.

    Pidoplichko, I. H. Upper Palaeolithic Dwellings of Mammoth Bones in the Ukraine: Kiev-Kirillovskii, Gontsy, Dobranichevka, Mezin and Mezhirich (J. and E. Hedges, Oxford, 1998).

  85. 85.

    Bosch, M. D., Nigst, P. R., Fladerer, F. A. & Antl-Weiser, W. Humans, bones and fire: zooarchaeological, taphonomic, and spatial analyses of a Gravettian mammoth bone accumulation at Grub-Kranawetberg (Austria). Quat. Int. 252, 109–121 (2012).

  86. 86.

    Yravedra, J. et al. New evidence of bones used as fuel in the Gravettian Coímbre cave, Northern Iberian Peninsula. Archaeol. Anthropol. Sci. 9, 1153–1168 (2016).

  87. 87.

    Pitulko, V. V., Pavlova, E. Y. & Nikolskiy, P. A. Palaeolithic: a case study based on the materials from Yana RHS, northern Yana-Dingighirka lowland, Arctic Siberia. World Archaeol. 47, 333–389 (2015).

  88. 88.

    Erlandson, J. M. et al. The kelp highway hypothesis: marine ecology, the coastal migration theory, and the peopling of the Americas. J. Isl. Coast. Archaeol. 2, 161–174 (2007).

  89. 89.

    Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–51 (2016).

  90. 90.

    Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the Last Glacial Maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).

  91. 91.

    Szpak, P. et al. Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: implications for paleoecology of the mammoth steppe. Palaeogeogr. Palaeoclim. Palaeoecol. 286, 88–96 (2010).

  92. 92.

    Barker, G. et al. The ‘human evolution’ in lowland tropical Southeast Asia: the antiquity and behaviour of anatomically modern humans at Niah Cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).

  93. 93.

    Barker, G. & Farr, L. Archaeological Investigations in the Niah Caves, Sarawak 2 (McDonald Institute Monographs, Cambridge, 2016).

  94. 94.

    Summerhayes, G. R. et al. Human adaptation and plant use in Highland New Guinea 49,000 to 44,000 years ago. Science 330, 78–81 (2010).

  95. 95.

    Piperno, D. R. The origins of plant cultivation and domestication in the New World tropics. Curr. Anthropol. 52, S453–S470 (2011).

  96. 96.

    Roberts, P. et al. Direct evidence for human rainforest resource reliance in Late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).

  97. 97.

    Roberts, P. et al. Fruits of the forest: human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (~36 to 3 ka) Sri Lanka. J. Hum. Evol. 106, 102–118 (2017).

  98. 98.

    Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of Late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).

  99. 99.

    Perera, N. et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-lena rockshelter. J. Hum. Evol. 61, 254–269 (2011).

  100. 100.

    Allen, J., Gosden, C. & White, J. P. Human Pleistocene adaptations in the tropical island pacific: recent evidence from New Ireland, a Greater Australian outlier. Antiquity 63, 548–561 (1989).

  101. 101.

    Garcea, E. A. A. Modern in Modern Origins: A North African Perspective (eds Hublin, J.-J. & McPherron, S. P.) 127–142 (Springer, Dordrecht, 2012).

  102. 102.

    Drake, N. & Breeze, P. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 103–122 (Springer, Dordrecht, 2016).

  103. 103.

    Scerri, E. The North African Middle Stone Age and its place in recent human evolution. Evol. Anthropol. 26, 119–135 (2017).

  104. 104.

    Richter, D., Moser, J., Nami, M. & Eiwanger, J. New chronometric data from Ifri n’Ammar (Morocco) and the chronostratigraphy of the Middle Palaeolithic in the Western Maghreb. J. Hum. Evol. 59, 672–679 (2010).

  105. 105.

    Clark, J. D. The Prehistory of Southern Africa (Plenum Press, New York, NY, 1959).

  106. 106.

    Barham, L. S. in Human Roots: Africa and Asia in the Middle Pleistocene (eds Barham, L. S. & Robson-Brown, K.) 65–80 (Western Academic and Specialist Press, Bristol, 2001).

  107. 107.

    Banks, W. E. et al. Eco-cultural niche modeling: new tools for reconstructing the geography and ecology of past human populations. Palaeoanthropology 2006, 68–83 (2006).

  108. 108.

    Taylor, N. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 272–299 (Springer, Dordrecht, 2016).

  109. 109.

    Robbins, L. H., Brook, G. A., Murphy, M. L., Ivester, A. H. & Campbell, A. C. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 175–193 (Springer, Dordrecht, 2016).

  110. 110.

    Thomas, D. S. G. & Burrough, S. L. Interpreting geoproxies of late Quaternary climate change in African drylands: implications for understanding environmental change and early human behaviour. Quat. Int. 253, 5–17 (2012).

  111. 111.

    Nash, D. et al. Going the distance: mapping mobility in the Kalahari Desert during the Middle Stone Age through multi-site geochemical provenancing of silcrete artefacts. J. Hum. Evol. 96, 113–133 (2016).

  112. 112.

    McCall, G. et al. Erb tanks: Middle and Later Stone Age rockshelter in the central Namib Desert, western Namibia. Palaeoanthropology 2011, 398–421 (2011).

  113. 113.

    Vogelsang, R. et al. New excavations of Middle Stone Age deposits at Apollo 11 rockshelter, Namibia: stratigraphy, chronology and past environments. J. Afr. Archaeol. 8, 185–218 (2010).

  114. 114.

    Dewar, G. & Stewart, B. Preliminary results of excavations at Spitzkloof Rockshelter, Richtersveld, South Africa. Quat. Int. 270, 30–39 (2012).

  115. 115.

    Dewar, G. & Stewart, B.A. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 195–212 (Springer, Dordrecht, 2016).

  116. 116.

    Stewart, B. A., Parker, A. G., Dewar, G. I., Morley, M. & Allott, L. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 247–271 (Springer, Dordrecht, 2016).

  117. 117.

    Stewart, B. A. & Mitchell, P. J. Late Quaternary palaeoclimates and human-environment dynamics of the Maloti-Drakensberg region, southern Africa. Quat. Sci. Rev. (in the press).

  118. 118.

    Pargeter, J., Loftus, E. & Mitchell, P. J. New ages from Sehonghong rockshelter: implications for the late Pleistocene occupation of highland Lesotho. J. Archaeol. Sci. Rep. 12, 307–315 (2017).

  119. 119.

    Roberts, P., Lee-Thorp, J. A., Mitchell, P. J. & Arthur, C. Stable carbon isotopic evidence for climate change across the Late Pleistocene to early Holocene from Lesotho, southern Africa. J. Quat. Sci. 28, 360–369 (2013).

  120. 120.

    Brandt, S., Hildebrand, E., Vogelsang, R., Wolfhagen, J. & Wang, H. A new MIS 3 radiocarbon chronology for Mochena Borago rockshelter, SW Ethiopia: implications for the interpretation of Late Pleistocene chronostratigraphy and human behavior. J. Archaeol Sci. Rep. 11, 352–369 (2012).

  121. 121.

    Langley, M. C., Clarkson, C. & Ulm, S. Behavioural complexity in Eurasian Neanderthal populations: a chronological examination of the archaeological evidence. Cam. Archaeol. J. 18, 289–307 (2008).

  122. 122.

    Zilhão, J. Personal ornaments and symbolism among the Neanderthals. Dev. Quat. Sci. 16, 35–49 (2012).

  123. 123.

    Joordens, J. C. A. et al. Homo erectus at Trinil on Hava used shells for tool production and engraving. Nature 518, 228–231 (2016).

  124. 124.

    Potts, R. Variability selection in hominid evolution. Evol. Anthropol. 7, 81–96 (1998).

  125. 125.

    de Menocal, P. Cultural responses to climate change during the late Holocene. Science 292, 667–673 (2001).

  126. 126.

    Urton, E. J. & Hobson, K. A. Intrapopulation variation in gray wolf isotope (δ15N and δ13C) profiles: implications for the ecology of individuals. Oecologia 145, 316–325 (2005).

  127. 127.

    Newsome, S. D. et al. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90, 961–974 (2009).

  128. 128.

    Vander Zanden, H. B., Bjorndal, K. A., Reich, K. J. & Bolten, A. B. Individual specialists in a generalist population: results from a long-term stable isotope series. Biol. Lett. 6, 711–714 (2010).

  129. 129.

    Matich, P., Heithaus, M. R. & Layman, C. A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305 (2011).

  130. 130.

    Marean, C. W. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Philos. Trans. R. Soc. London Ser.B 371, 20150239 (2016).

  131. 131.

    Summerhayes, G. R., Field, J. H., Shaw, B. & Gaffney, D. The archaeology of forest exploitation and change in the tropics during the Pleistocene: the case of northern Sahul (Pleistocene New Guinea). Quat. Int. 448, 14–30 (2016).

  132. 132.

    Roberts, P. & Petraglia, M. D. Pleistocene rainforests: barriers or attractive environments for early human foragers? World Archaeol. 47, 718–739 (2015).

  133. 133.

    Hill, K. R., Wood, B. M., Baggio, J., Hurtado, A. M. & Boyd, R. T. Hunter-gatherer inter-band interaction rates: implications for cumulative culture. PLoS ONE 9, e102806 (2014).

  134. 134.

    Hill, K., Barton, M. & Hurtado, A. M. The emergence of human uniqueness: underlying characteristics of behavioral modernity. Evol. Anthropol. 18, 187–200 (2009).

  135. 135.

    Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).

  136. 136.

    Kendal, J., Tehrani, J. J. & Odling-Smee, J. Human niche construction in interdisciplinary focus. Philos. Trans. R. Soc. London Ser. B 366, 785–792 (2011).

  137. 137.

    Hodgkins, J. et al. Climate-mediated shifts in Neandertal subsistence behaviors at Pech de l’Azé IV and Roc de Marsal (Dordogne Valley, France). J. Hum. Evol. 96, 1–18 (2016).

  138. 138.

    Derevianko, A. P., Brantingham, P. J., Olsen, J. W. & Tseveendorj, D. in The Early Upper Paleolithic beyond Western Europe (eds Brantingham, P. J., Kuhn, S. L. & Kerry, K. W.) 207–222 (Univ. California Press, Berkeley, CA, 2004).

  139. 139.

    Roosevelt, A. C. et al. Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272, 373–84 (1996).

  140. 140.

    Mercader, J. Forest people: the role of African rainforests in human evolution and dispersal. Evol. Anthropol. 11, 117–124 (2002).

  141. 141.

    Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

  142. 142.

    Quach, H. et al. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell 167, 643–656 (2016).

  143. 143.

    Krause, J. & Pääbo, S. Genetic time travel. Genetics 203, 9–12 (2016).

  144. 144.

    Veeramah, K. R. & Hammer, M. F. The impact of whole-genome sequencing on the reconstruction of human population history. Nat. Rev. Genet. 15, 149–162 (2014).

  145. 145.

    Bae, C. J., Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science 358, 1–7 (2017).

  146. 146.

    Ehlers, J., Gibbard, P. L. & Hughes, P. D. (eds) Quaternary Glaciations — Extent and Chronology Vol. 15 (Elsevier, Amsterdam, 2011).

  147. 147.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spaÿtial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

Download references


P.R. thanks the Max Planck Society for funding and support. Altitude and forest coverage data for Fig. 2 are available from the US Geological Survey. We also thank H. Sell for his help producing Figs. 1, 2 and 4. J. Blinkhorn and Y. Demyanov provided photographs used in Fig. 3.

Author information


  1. Max Planck Institute for the Science of Human History, Jena, Germany

    • Patrick Roberts
  2. Museum of Anthropological Archaeology and Department of Anthropology, University of Michigan, Ann Arbor, MI, USA

    • Brian A. Stewart


  1. Search for Patrick Roberts in:

  2. Search for Brian A. Stewart in:


P.R. and B.A.S. designed this manuscript, analysed and interpreted the data, wrote the manuscript, and revised the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Patrick Roberts.

About this article

Publication history