Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens

Abstract

Definitions of our species as unique within the hominin clade have tended to focus on differences in capacities for symbolism, language, social networking, technological competence and cognitive development. More recently, however, attention has been turned towards humans’ unique ecological plasticity. Here, we critically review the growing archaeological and palaeoenvironmental datasets relating to the Middle–Late Pleistocene (300–12 thousand years ago) dispersal of our species within and beyond Africa. We argue, based on comparison with the available information for other members of the genus Homo, that our species developed a new ecological niche, that of the ‘generalist specialist’. Not only did it occupy and utilize a diversity of environments, but it also specialized in its adaptation to some of these environmental extremes. Understanding this ecological niche provides a framework for discussing what it means to be human and how our species became the last surviving hominin on the planet.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Map showing the minimum suggested dates of persistent occupation of the different environmental extremes discussed in the text by H. sapiens based on current evidence.

NASA Worldview.

Fig. 3: Photographic selection of some of the ecological challenges faced by Pleistocene H. sapiens.

Yuri Demyanov. d, The tropical evergreen rainforest of Sri Lanka in the vicinity of one of the earliest occupied sites in the region. Photograph taken by P.R.

Fig. 4: Schematic of the utilization of different numbers of food webs by generalist and specialist populations, and the proposed unique human niche of ‘generalist specialist’127.

References

  1. 1.

    Hublin, J. J. et al. New fossils from Jebel Urhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Wadley, L., Hodgkiss, T. & Grant, M. Implications for complex cognition from the hafting of tools with compound adhesives in the Middle Stone Age. Proc. Natl Acad. Sci. USA 106, 9590–9594 (2009).

    PubMed  Article  Google Scholar 

  4. 4.

    Conard, N.J. Cultural modernity: consensus or conundrum? Proc. Natl Acad. Sci. USA 107, 7621–7622 (2010).

    PubMed  Article  Google Scholar 

  5. 5.

    Shea, J. J. & Sisk, M. L. Complex projectile technology and Homo sapiens dispersal from Africa to Western Eurasia. Paleoanthropology 2010, 100–122 (2010).

    Google Scholar 

  6. 6.

    Mackay, A., Stewart, B. A. & Chase, B. M. Coalescence and fragmentation in the Late Pleistocene archaeology of southernmost Africa. J. Hum. Evol. 72, 26–51 (2014).

    PubMed  Article  Google Scholar 

  7. 7.

    Dunbar, R. Evolution of the social brain. Science 302, 1160–1161 (2003).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Henshilwood, C. S. & Dubreuil, B. The Still Bay and Howiesons Poort, 77–59 ka: symbolic material culture and the evolution of the mind during the African Middle Stone Age. Curr. Anthropol. 52, 361–400 (2011).

    Article  Google Scholar 

  9. 9.

    Roberts, P. ‘We have never been behaviourally modern’: the implications of material engagement theory and metaplasticity for understanding the Late Pleistocene record of human behaviour. Quat. Int. 405, 8–20 (2016).

    Article  Google Scholar 

  10. 10.

    Gamble, C. Timewalkers: The Prehistory of Global Colonization (Alan Sutton Press, Stroud, 1993).

  11. 11.

    Gamble, C. Settling the Earth: The Archaeology of Deep Human History (Cambridge Univ. Press, Cambridge, 2013).

  12. 12.

    Stringer, C. B. et al. Neanderthal exploitation of marine mammals in Gibraltar. Proc. Natl Acad. Sci. USA 105, 14319–14324 (2008).

    PubMed  Article  Google Scholar 

  13. 13.

    Macdonald, K., Roebroeks, W. & Verpoorte, A. in The Evolution of Hominid Diets: Integrating Approaches to the Study of Palaeolithic Subsistence (eds Hublin, J. J. & Richards, M.) 211–220 (Springer, Dordrecht, 2009).

  14. 14.

    Banks, W. E. et al. Neanderthal extinction by competitive exclusions. PLoS ONE 3, e3972 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Bird, M., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the last glacial period: a savanna corridor in Sundaland? Quat. Sci. Rev. 24, 2228–2242 (2005).

    Article  Google Scholar 

  16. 16.

    Mellars, P. Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proc. Natl Acad. Sci. USA 103, 9381–9386 (2006).

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Boivin, N., Fuller, D. Q., Dennell, R., Allaby, R. & Petraglia, M. D. Human dispersal across diverse environments of Asia during the Upper Pleistocene. Quat. Int. 300, 32–47 (2013).

    Article  Google Scholar 

  18. 18.

    Timmermann, A. & Friedrich, T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Jones, S. C. & Stewart, B. A. Africa from MIS 6-2: Population Dynamics and Paleoenvironments (Springer, Dordrecht, 2016).

  20. 20.

    Elton, S. The environmental context of human evolutionary history in Eurasia and Africa. J. Anat. 212, 377–393 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Rabett, R. J. Human Adaptation in the Asian Palaeolithic (Cambridge Univ. Press, Cambridge, 2012). .

  22. 22.

    Stewart, B. A. et al. Afromontane foragers of the Late Pleistocene: site formation, chronology and occupational pulsing at Melikane Rockshelter Lesotho. Quat. Int. 270, 40–60 (2012).

    Article  Google Scholar 

  23. 23.

    Roberts, P., Boivin, N., Lee-Thorp, J., Petraglia, M. & Stock, J. Tropical forests and the genus Homo. Evol. Anthropol. 25, 306–317 (2016).

    PubMed  Article  Google Scholar 

  24. 24.

    Groucutt, H. S. & Petraglia, M. D. The prehistory of the Arabian Peninsula: deserts, dispersals, and demography. Evol. Anthropol. 21, 113–125 (2012).

    PubMed  Article  Google Scholar 

  25. 25.

    Blinkhorn, J., Achyuthan, H., Ditchfield, P. & Petraglia, M. Palaeoenvironmental dynamics and Palaeolithic occupation at Katoati, Thar Desert, India. Quat. Res. 87, 298–313 (2017).

    Article  CAS  Google Scholar 

  26. 26.

    Beall, C. M. Human adaptability studies at high altitude: research designs and major concepts during fifty years of discovery. Am. J. Hum. Biol. 25, 141–147 (2013).

    PubMed  Article  Google Scholar 

  27. 27.

    Pitulko, V. V. et al. Early human presence in the Arctic: evidence from 45,000-year-old mammoth remains. Science 351, 260–263 (2016).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Gabunia, L. et al. Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. Science 288, 1019–1025 (2000).

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Falguères, C. et al. Earliest humans in Europe: the age of TD6 Gran Dolina, Atapuerca, Spain. J. Hum. Evol. 37, 343–352 (1999).

    PubMed  Article  Google Scholar 

  30. 30.

    Zhu, R. X. et al. Early evidence of the genus Homo in East Asia. J. Hum. Evol. 55, 1075–1085 (2008).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Parfitt, S. A. et al. Early Pleistocene human occupation at the edge of the boreal zone in northwest Europe. Nature 466, 229–233 (2010).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Martínez-Navarro, B. in Human Palaeoecology in the Levantine Corridor (eds Goren-Inbar, N. & Speth, J. D.) 37–51 (Oxbow Books, Oxford, 2004).

  33. 33.

    Dennell, R. W. & Roebroeks, W. Out of Africa: an Asian perspective on early human dispersal from Africa. Nature 438, 1099–1104 (2005).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Tappen, M., Lordkipanidze, D., Bukshianidze, M., Vekua, A. & Ferring, R. in Breathing Life into Fossils: Taphonomic Studies in Honor of C. K. (Bob) Brain (eds Pickering, T. R. & Schick, K.) 119–135 (Stone Age Institute Press, Bloomington, IN, 2007).

  35. 35.

    Rodríguez, J. et al. One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain). Quat. Sci. Rev. 30, 1396–1412 (2011).

    Article  Google Scholar 

  36. 36.

    Sémah, A.-M. & Sémah, F. The rain forest in Java through the Quaternary and its relationships with humans (adaptation, exploitation and impact on the forest). Quat. Int. 249, 120–128 (2012).

    Article  Google Scholar 

  37. 37.

    Sémah, F., Sémah, A.-M. & Simanjuntak, T. in Under the Canopy: the Archaeology of Tropical Rain Forests (ed. Mercader, J.) 161–90 (Rutgers Univ. Press, Piscataway, NJ, 2002).

  38. 38.

    de Vos, J., Sondaar, P. Y., van den Bergh, G. D. & Aziz, F. The Homo bearing deposits of Java and its ecological context. Cour. Forsch. Senck. 171, 129–140 (1994).

    Google Scholar 

  39. 39.

    Larick, R. et al. Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia. Proc. Natl Acad. Sci. USA 98, 4866–4871 (2001).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Zaim, Y. et al. New 1.5 million-year-old Homo erectus maxilla from Sangiran (Central Java, Indonesia). J. Hum. Evol. 61, 363–376 (2011).

    PubMed  Article  Google Scholar 

  41. 41.

    Van den Bergh, G. D. et al. Homo floresiensis-like fossils from the early middle Pleistocene of Flores. Nature 534, 245–248 (2016).

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Marwick, B. Biogeography of middle Pleistocene hominins in mainland Southeast Asia: a review of current evidence. Quat. Int. 202, 51–58 (2009).

    Article  Google Scholar 

  43. 43.

    Brumm, A. et al. Stone technology at the middle Pleistocene site of Mata Menge, Flores, Indonesia. J. Archaeol. Sci. 37, 451–473 (2010).

    Article  Google Scholar 

  44. 44.

    Green, R. E. et al. A draft sequence of the Neanderthal genome. Science 328, 710–722 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Stringer, C. & Gamble, C. In Search of the Neanderthals: Solving the Puzzle of Human Origins (Thames and Hudson, London, 1993).

    Google Scholar 

  46. 46.

    de Azevedo, S. et al. Nasal airflow simulations suggest convergent adaptation in Neanderthals and modern humans. Proc. Natl Acad. Sci. USA 114, 12442–12447 (2017).

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Bocherens, H., Drucker, D. G., Billiou, D., Patou-Mathis, M. & Vandermeersch, B. Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: review and use of a multi-source mixing model. J. Hum. Evol. 49, 71–87 (2005).

    PubMed  Article  Google Scholar 

  48. 48.

    Brown, K., Fa, D. A., Finlayson, G. & Finalyson, C. in Trekking the Shores: Changing Coastlines and the Antiquity of Coastal Settlement (ed. Bicho, N. F.) 247–272 (Interdisciplinary Contributions to Archaeology, Springer Science, Dordrecht, 2011).

  49. 49.

    Henry, A. G., Brooks, A. S. & Piperno, D. R. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc. Natl Acad. Sci. USA 108, 486–491 (2011).

    PubMed  Article  Google Scholar 

  50. 50.

    Stewart, J. R. The ecology and adaptation of Neanderthals during the non-analogue environment of Oxygen Isotope Stage 3. Quat. Int. 137, 35–46 (2005).

    Article  Google Scholar 

  51. 51.

    Rae, T. C., Koppe, T. & Stringer, C. B. The Neanderthal face is not cold adapted. J. Hum. Evol. 60, 234–239 (2011).

    PubMed  Article  Google Scholar 

  52. 52.

    Skrzypek, G., Wiśniewski, A. & Grierson, P. F. How cold was it for Neanderthals moving to Central Europe during warm phases of the last glaciation. Quat. Sci. Rev. 30, 481–487 (2011).

    Article  Google Scholar 

  53. 53.

    Burjachs, F. et al. Palaeoecology of Neanderthals during Dansgaard–Oeschger cycles in northeastern Iberia (Abric Romani): from regional to global scale. Quat. Int. 247, 26–37 (2012).

    Article  Google Scholar 

  54. 54.

    Slimak, L. et al. Late Mousterian persistence near the Arctic Circle. Science 332, 841–845 (2011).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Slimak, L. et al. Response to “Comment on Late Mousterian persistence near the Arctic Circle”. Science 335, 167 (2012).

    Article  CAS  Google Scholar 

  56. 56.

    Groucutt, H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015).

    PubMed  Article  Google Scholar 

  57. 57.

    Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 3659, 456–459 (2018).

    Article  CAS  Google Scholar 

  58. 58.

    Clark, J. D. et al. Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 747–752 (2003).

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Vaks, A. et al. Desert speleothems reveal climatic window for African exodus of early modern humans. Geology 35, 831–834 (2007).

    Article  Google Scholar 

  60. 60.

    Blome, M. W., Cohen, A. S., Tryon, C. A., Brooks, A. S. & Russell, J. The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000–30,000 years ago. J. Hum. Evol. 62, 563–592 (2012).

    PubMed  Article  Google Scholar 

  61. 61.

    Scerri, E. M. L. et al. Middle to Late Pleistocene human habitation in the western Nefud Desert, Saudi Arabia. Quat. Int. 382, 200–214 (2015).

    Article  Google Scholar 

  62. 62.

    Groucutt, H. S. et al. Homo sapiens in Arabia by 85,000 years ago. Nat. Ecol. Evol. 2, 800–809 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Blinkhorn, J., Achyuthan, H., Petragliam, M. & Ditchfield, P. Middle Palaeolithic occupation in the Thar Desert during the Upper Pleistocene the signature of a modern human exit out of Africa? Quat. Sci. Rev. 77, 233–238 (2013).

    Article  Google Scholar 

  64. 64.

    Rosenberg, T. M. et al. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39, 1115–1118 (2011).

    Article  Google Scholar 

  65. 65.

    Breeze, P. S. et al. Remote sensing and GIS techniques for reconstructing Arabian palaeohydrology and identifying archaeological sites. Quat. Int. 382, 98–119 (2015).

    Article  Google Scholar 

  66. 66.

    Blinkhorn, J., Achyuthan, H. & Petraglia, M. D. Ostrich expansion into India during the late Pleistocene: implications for continental dispersal corridors. Palaeogeogr. Palaeoclim. Palaeoecol. 417, 80–90 (2015).

    Article  Google Scholar 

  67. 67.

    Stewart, M. et al. Middle and Late Pleistocene mammal fossils of Arabia and surrounding regions: implications for biogeography and hominin dispersals. Quat. Int. https://doi.org/10.1016/j.quaint.2017.11.052 (2017).

  68. 68.

    Hiscock, P. & Wallis, L. A. in Desert Peoples: Archaeological Perspectives (eds Veth, P., Smith, M. & Hiscock, P.) Ch. 3 (Blackwell Publishing, Oxford, 2005).

  69. 69.

    Lorenzo, F. R. et al. A genetic mechanism for Tibetan high-altitude adaptation. Nat. Genet. 46, 951–956 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Barton, L. The cultural context of biological adaptation to high elevation Tibet. Archaeol. Res. Asia 5, 4–11 (2016).

    Article  Google Scholar 

  71. 71.

    Huerta-Sánchez, E. et al. Altitude adaptation in Tibet caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Samlararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1241–1247 (2016).

    Article  CAS  Google Scholar 

  73. 73.

    Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75 (2010).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Jeong, C. et al. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat. Commun. 5, 3281 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Meyer, M. C. et al. Permanent human occupation of central Tibetan Plateau in the early Holocene. Science 355, 64–67 (2017).

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Brantingham, P. J. & Xing, G. Peopling of the northern Tibetan Plateau. World Archaeol. 38, 387–414 (2006).

    Article  Google Scholar 

  77. 77.

    Yuan, B., Huang, W. & Dian Zhang, D. New evidence for human occupation of the northern Tibetan Plateau, China during the Late Pleistocene.Chin. Sci. Bull. 52, 2675–2679 (2007).

    Article  Google Scholar 

  78. 78.

    Qi, X. et al. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the Tibetan Plateau. Mol. Biol. Evol. 30, 1761–1778 (2013).

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Rademaker, K. et al. Paleoindian settlement of the high-altitude Peruvian Andes. Science 346, 466–469 (2014).

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Tarasov, P. E. et al. Last glacial vegetation reconstructions in the extreme-continental eastern Asia: potentials of pollen and n-alkane biomarker analyses. Quat. Int. 290–291, 253–263 (2013).

    Article  Google Scholar 

  81. 81.

    Pavlov, P., Svendsen, J. I. & Indrelid, S. Human presence in the European Arctic nearly 40,000 years ago. Nature 413, 64–67 (2001).

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Nikolskiy, V. & Pitulko, V. Evidence from the Yana Palaeolithic site, Arctic Siberia, yields clues to the riddle of mammoth hunting. J. Archaeol. Sci. 40, 4189–4197 (2013).

    Article  Google Scholar 

  83. 83.

    Goebel, T. Pleistocene human colonization of Siberia and peopling of the Americas: an ecological approach. Evol. Anthropol. 8, 208–227 (1999).

    Article  Google Scholar 

  84. 84.

    Pidoplichko, I. H. Upper Palaeolithic Dwellings of Mammoth Bones in the Ukraine: Kiev-Kirillovskii, Gontsy, Dobranichevka, Mezin and Mezhirich (J. and E. Hedges, Oxford, 1998).

  85. 85.

    Bosch, M. D., Nigst, P. R., Fladerer, F. A. & Antl-Weiser, W. Humans, bones and fire: zooarchaeological, taphonomic, and spatial analyses of a Gravettian mammoth bone accumulation at Grub-Kranawetberg (Austria). Quat. Int. 252, 109–121 (2012).

    Article  Google Scholar 

  86. 86.

    Yravedra, J. et al. New evidence of bones used as fuel in the Gravettian Coímbre cave, Northern Iberian Peninsula. Archaeol. Anthropol. Sci. 9, 1153–1168 (2016).

    Article  Google Scholar 

  87. 87.

    Pitulko, V. V., Pavlova, E. Y. & Nikolskiy, P. A. Palaeolithic: a case study based on the materials from Yana RHS, northern Yana-Dingighirka lowland, Arctic Siberia. World Archaeol. 47, 333–389 (2015).

    Article  Google Scholar 

  88. 88.

    Erlandson, J. M. et al. The kelp highway hypothesis: marine ecology, the coastal migration theory, and the peopling of the Americas. J. Isl. Coast. Archaeol. 2, 161–174 (2007).

    Article  Google Scholar 

  89. 89.

    Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–51 (2016).

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the Last Glacial Maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Szpak, P. et al. Regional differences in bone collagen δ13C and δ15N of Pleistocene mammoths: implications for paleoecology of the mammoth steppe. Palaeogeogr. Palaeoclim. Palaeoecol. 286, 88–96 (2010).

    Article  Google Scholar 

  92. 92.

    Barker, G. et al. The ‘human evolution’ in lowland tropical Southeast Asia: the antiquity and behaviour of anatomically modern humans at Niah Cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).

    PubMed  Article  Google Scholar 

  93. 93.

    Barker, G. & Farr, L. Archaeological Investigations in the Niah Caves, Sarawak 2 (McDonald Institute Monographs, Cambridge, 2016).

    Google Scholar 

  94. 94.

    Summerhayes, G. R. et al. Human adaptation and plant use in Highland New Guinea 49,000 to 44,000 years ago. Science 330, 78–81 (2010).

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Piperno, D. R. The origins of plant cultivation and domestication in the New World tropics. Curr. Anthropol. 52, S453–S470 (2011).

    Article  Google Scholar 

  96. 96.

    Roberts, P. et al. Direct evidence for human rainforest resource reliance in Late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Roberts, P. et al. Fruits of the forest: human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (~36 to 3 ka) Sri Lanka. J. Hum. Evol. 106, 102–118 (2017).

    PubMed  Article  Google Scholar 

  98. 98.

    Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of Late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).

    Article  Google Scholar 

  99. 99.

    Perera, N. et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-lena rockshelter. J. Hum. Evol. 61, 254–269 (2011).

    PubMed  Article  Google Scholar 

  100. 100.

    Allen, J., Gosden, C. & White, J. P. Human Pleistocene adaptations in the tropical island pacific: recent evidence from New Ireland, a Greater Australian outlier. Antiquity 63, 548–561 (1989).

    Article  Google Scholar 

  101. 101.

    Garcea, E. A. A. Modern in Modern Origins: A North African Perspective (eds Hublin, J.-J. & McPherron, S. P.) 127–142 (Springer, Dordrecht, 2012).

  102. 102.

    Drake, N. & Breeze, P. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 103–122 (Springer, Dordrecht, 2016).

  103. 103.

    Scerri, E. The North African Middle Stone Age and its place in recent human evolution. Evol. Anthropol. 26, 119–135 (2017).

    PubMed  Article  Google Scholar 

  104. 104.

    Richter, D., Moser, J., Nami, M. & Eiwanger, J. New chronometric data from Ifri n’Ammar (Morocco) and the chronostratigraphy of the Middle Palaeolithic in the Western Maghreb. J. Hum. Evol. 59, 672–679 (2010).

    PubMed  Article  Google Scholar 

  105. 105.

    Clark, J. D. The Prehistory of Southern Africa (Plenum Press, New York, NY, 1959).

    Google Scholar 

  106. 106.

    Barham, L. S. in Human Roots: Africa and Asia in the Middle Pleistocene (eds Barham, L. S. & Robson-Brown, K.) 65–80 (Western Academic and Specialist Press, Bristol, 2001).

  107. 107.

    Banks, W. E. et al. Eco-cultural niche modeling: new tools for reconstructing the geography and ecology of past human populations. Palaeoanthropology 2006, 68–83 (2006).

    Google Scholar 

  108. 108.

    Taylor, N. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 272–299 (Springer, Dordrecht, 2016).

  109. 109.

    Robbins, L. H., Brook, G. A., Murphy, M. L., Ivester, A. H. & Campbell, A. C. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 175–193 (Springer, Dordrecht, 2016).

  110. 110.

    Thomas, D. S. G. & Burrough, S. L. Interpreting geoproxies of late Quaternary climate change in African drylands: implications for understanding environmental change and early human behaviour. Quat. Int. 253, 5–17 (2012).

    Article  Google Scholar 

  111. 111.

    Nash, D. et al. Going the distance: mapping mobility in the Kalahari Desert during the Middle Stone Age through multi-site geochemical provenancing of silcrete artefacts. J. Hum. Evol. 96, 113–133 (2016).

    PubMed  Article  Google Scholar 

  112. 112.

    McCall, G. et al. Erb tanks: Middle and Later Stone Age rockshelter in the central Namib Desert, western Namibia. Palaeoanthropology 2011, 398–421 (2011).

    Google Scholar 

  113. 113.

    Vogelsang, R. et al. New excavations of Middle Stone Age deposits at Apollo 11 rockshelter, Namibia: stratigraphy, chronology and past environments. J. Afr. Archaeol. 8, 185–218 (2010).

    Article  Google Scholar 

  114. 114.

    Dewar, G. & Stewart, B. Preliminary results of excavations at Spitzkloof Rockshelter, Richtersveld, South Africa. Quat. Int. 270, 30–39 (2012).

    Article  Google Scholar 

  115. 115.

    Dewar, G. & Stewart, B.A. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 195–212 (Springer, Dordrecht, 2016).

  116. 116.

    Stewart, B. A., Parker, A. G., Dewar, G. I., Morley, M. & Allott, L. in Africa from MIS 6-2: Population Dynamics and Paleoenvironments (eds Jones, S. C. & Stewart, B. A.) 247–271 (Springer, Dordrecht, 2016).

  117. 117.

    Stewart, B. A. & Mitchell, P. J. Late Quaternary palaeoclimates and human-environment dynamics of the Maloti-Drakensberg region, southern Africa. Quat. Sci. Rev. (in the press).

  118. 118.

    Pargeter, J., Loftus, E. & Mitchell, P. J. New ages from Sehonghong rockshelter: implications for the late Pleistocene occupation of highland Lesotho. J. Archaeol. Sci. Rep. 12, 307–315 (2017).

    Google Scholar 

  119. 119.

    Roberts, P., Lee-Thorp, J. A., Mitchell, P. J. & Arthur, C. Stable carbon isotopic evidence for climate change across the Late Pleistocene to early Holocene from Lesotho, southern Africa. J. Quat. Sci. 28, 360–369 (2013).

    Article  Google Scholar 

  120. 120.

    Brandt, S., Hildebrand, E., Vogelsang, R., Wolfhagen, J. & Wang, H. A new MIS 3 radiocarbon chronology for Mochena Borago rockshelter, SW Ethiopia: implications for the interpretation of Late Pleistocene chronostratigraphy and human behavior. J. Archaeol Sci. Rep. 11, 352–369 (2012).

    Google Scholar 

  121. 121.

    Langley, M. C., Clarkson, C. & Ulm, S. Behavioural complexity in Eurasian Neanderthal populations: a chronological examination of the archaeological evidence. Cam. Archaeol. J. 18, 289–307 (2008).

    Article  Google Scholar 

  122. 122.

    Zilhão, J. Personal ornaments and symbolism among the Neanderthals. Dev. Quat. Sci. 16, 35–49 (2012).

    Google Scholar 

  123. 123.

    Joordens, J. C. A. et al. Homo erectus at Trinil on Hava used shells for tool production and engraving. Nature 518, 228–231 (2016).

    Article  CAS  Google Scholar 

  124. 124.

    Potts, R. Variability selection in hominid evolution. Evol. Anthropol. 7, 81–96 (1998).

    Article  Google Scholar 

  125. 125.

    de Menocal, P. Cultural responses to climate change during the late Holocene. Science 292, 667–673 (2001).

    Article  Google Scholar 

  126. 126.

    Urton, E. J. & Hobson, K. A. Intrapopulation variation in gray wolf isotope (δ15N and δ13C) profiles: implications for the ecology of individuals. Oecologia 145, 316–325 (2005).

    Article  Google Scholar 

  127. 127.

    Newsome, S. D. et al. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90, 961–974 (2009).

    PubMed  Article  Google Scholar 

  128. 128.

    Vander Zanden, H. B., Bjorndal, K. A., Reich, K. J. & Bolten, A. B. Individual specialists in a generalist population: results from a long-term stable isotope series. Biol. Lett. 6, 711–714 (2010).

    Article  Google Scholar 

  129. 129.

    Matich, P., Heithaus, M. R. & Layman, C. A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305 (2011).

    PubMed  Article  Google Scholar 

  130. 130.

    Marean, C. W. The transition to foraging for dense and predictable resources and its impact on the evolution of modern humans. Philos. Trans. R. Soc. London Ser.B 371, 20150239 (2016).

    Article  Google Scholar 

  131. 131.

    Summerhayes, G. R., Field, J. H., Shaw, B. & Gaffney, D. The archaeology of forest exploitation and change in the tropics during the Pleistocene: the case of northern Sahul (Pleistocene New Guinea). Quat. Int. 448, 14–30 (2016).

    Article  Google Scholar 

  132. 132.

    Roberts, P. & Petraglia, M. D. Pleistocene rainforests: barriers or attractive environments for early human foragers? World Archaeol. 47, 718–739 (2015).

    Article  Google Scholar 

  133. 133.

    Hill, K. R., Wood, B. M., Baggio, J., Hurtado, A. M. & Boyd, R. T. Hunter-gatherer inter-band interaction rates: implications for cumulative culture. PLoS ONE 9, e102806 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Hill, K., Barton, M. & Hurtado, A. M. The emergence of human uniqueness: underlying characteristics of behavioral modernity. Evol. Anthropol. 18, 187–200 (2009).

    Article  Google Scholar 

  135. 135.

    Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).

    PubMed  Article  Google Scholar 

  136. 136.

    Kendal, J., Tehrani, J. J. & Odling-Smee, J. Human niche construction in interdisciplinary focus. Philos. Trans. R. Soc. London Ser. B 366, 785–792 (2011).

    Article  Google Scholar 

  137. 137.

    Hodgkins, J. et al. Climate-mediated shifts in Neandertal subsistence behaviors at Pech de l’Azé IV and Roc de Marsal (Dordogne Valley, France). J. Hum. Evol. 96, 1–18 (2016).

    PubMed  Article  Google Scholar 

  138. 138.

    Derevianko, A. P., Brantingham, P. J., Olsen, J. W. & Tseveendorj, D. in The Early Upper Paleolithic beyond Western Europe (eds Brantingham, P. J., Kuhn, S. L. & Kerry, K. W.) 207–222 (Univ. California Press, Berkeley, CA, 2004).

  139. 139.

    Roosevelt, A. C. et al. Paleoindian cave dwellers in the Amazon: the peopling of the Americas. Science 272, 373–84 (1996).

    Article  CAS  Google Scholar 

  140. 140.

    Mercader, J. Forest people: the role of African rainforests in human evolution and dispersal. Evol. Anthropol. 11, 117–124 (2002).

    Article  Google Scholar 

  141. 141.

    Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

    PubMed  Article  CAS  Google Scholar 

  142. 142.

    Quach, H. et al. Genetic adaptation and Neandertal admixture shaped the immune system of human populations. Cell 167, 643–656 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143.

    Krause, J. & Pääbo, S. Genetic time travel. Genetics 203, 9–12 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  144. 144.

    Veeramah, K. R. & Hammer, M. F. The impact of whole-genome sequencing on the reconstruction of human population history. Nat. Rev. Genet. 15, 149–162 (2014).

    PubMed  Article  CAS  Google Scholar 

  145. 145.

    Bae, C. J., Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science 358, 1–7 (2017).

    Article  CAS  Google Scholar 

  146. 146.

    Ehlers, J., Gibbard, P. L. & Hughes, P. D. (eds) Quaternary Glaciations — Extent and Chronology Vol. 15 (Elsevier, Amsterdam, 2011).

  147. 147.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spaÿtial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

P.R. thanks the Max Planck Society for funding and support. Altitude and forest coverage data for Fig. 2 are available from the US Geological Survey. We also thank H. Sell for his help producing Figs. 1, 2 and 4. J. Blinkhorn and Y. Demyanov provided photographs used in Fig. 3.

Author information

Affiliations

Authors

Contributions

P.R. and B.A.S. designed this manuscript, analysed and interpreted the data, wrote the manuscript, and revised the manuscript.

Corresponding author

Correspondence to Patrick Roberts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roberts, P., Stewart, B.A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat Hum Behav 2, 542–550 (2018). https://doi.org/10.1038/s41562-018-0394-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing