Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Retinal-specific category learning

Abstract

Virtually all cognitive theories of category learning (such as prototype theory1,2,3,4,5 and exemplar theory6,7,8) view this important skill as a high-level process that uses abstract representations of objects in the world. Because these representations are removed from visual characteristics of the display, such theories suggest that category learning occurs in higher-level (such as association) areas and therefore should be immune to the visual field dependencies that characterize processing of objects mediated by representations in low-level visual areas. Here we challenge that view by describing a fully controlled demonstration of visual-field dependence in category learning. Eye-tracking was used to control gaze while participants either learned rule-based categories known to recruit prefrontal-based explicit reasoning, or information-integration categories known to depend on basal-ganglia-mediated procedural learning9. Results showed that learning was visual-field dependent with information-integration categories, but we found no evidence of visual-field dependence with rule-based categories. A theoretical interpretation of this difference is offered in terms of the underlying neurobiology. Finally, these results are situated within the broad perceptual-learning literature in an attempt to motivate further research on the similarities and differences between category and perceptual learning.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Sample stimuli and four information-integration categories.
Fig. 2: Order of events that occurred in each phase of the ‘new eye first’ condition.
Fig. 3: Results of experiment 1.
Fig. 4: Results of experiment 2.

References

  1. Homa, D., Sterling, S., & Trepel, L. Limitations of exemplar-based generalization and the abstraction of categorical information. J. Exp. Psychol. Human. Learn. Mem. 7, 418–439 (1981).

    Article  Google Scholar 

  2. Posner, M. I. & Keele, S. W. On the genesis of abstract ideas. J. Exp. Psychol. 77, 353–363 (1968).

    Article  PubMed  CAS  Google Scholar 

  3. Reed, S. K. Pattern recognition and categorization. Cogn. Psychol. 3, 382–407 (1972).

    Article  Google Scholar 

  4. Rosch, E. H. Natural categories. Cogn. Psychol. 4, 328–350 (1973).

    Article  Google Scholar 

  5. Smith, J. D., & Minda, J. P. Prototypes in the mist: the early epochs of category learning. J. Exp. Psychol. Learn. Mem. Cogn. 24, 1411–1430 (1998).

    Article  Google Scholar 

  6. Estes, W. K. Array models for category learning. Cogn. Psychol. 18, 500–549 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. Medin, D. L. & Schaffer, M. M. Context theory of classification learning. Psychol. Rev. 85, 207–238 (1978).

    Article  Google Scholar 

  8. Nosofsky, R. M. Attention, similarity, and the identification-categorization relationship. J. Exp. Psychol. Gen. 115, 39–57 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. Ashby, F. G. & Maddox, W. T. Human category learning. Annu. Rev. Psychol. 56, 149–178 (2005).

    Article  PubMed  Google Scholar 

  10. Ashby, F. G., & Maddox, W. T. Human category learning 2.0. Ann. N. Y. Acad. Sci. 1224, 147–161 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Poldrack, R. A. et al. Interactive memory systems in the human brain. Nature 414, 546–550 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. Poldrack, R. A. & Packard, M. G. Competition among multiple memory systems: converging evidence from animal and human brain studies. Neuropsychologia 41, 245–251 (2003).

    Article  PubMed  Google Scholar 

  13. Squire, L. R. Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem. 82, 171–177 (2004).

    Article  PubMed  Google Scholar 

  14. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U. & Waldron, E. M. A neuropsychological theory of multiple systems in category learning. Psychol. Rev. 105, 442–481 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. Maddox, W. T., Ashby, F. G., Ing, A. D., & Pickering, A. D. Disrupting feedback processing interferes with rule-based but not information-integration category learning. Mem. Cogn. 32, 582–591 (2004).

    Article  Google Scholar 

  16. Waldron, E. M., & Ashby, F. G. The effects of concurrent task interference on category learning: evidence for multiple category learning systems. Psychon. Bull. Rev. 8, 168–176 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. Zeithamova, D., & Maddox, W. T. Dual-task interference in perceptual category learning. Mem. Cogn. 34, 387–398 (2006).

    Article  Google Scholar 

  18. Ashby, F. G., & Gott, R. E. Decision rules in the perception and categorization of multidimensional stimuli. J. Exp. Psychol. Learn. Mem. Cogn. 14, 33–53 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. Ashby, F. G. & Ennis, J. M. The role of the basal ganglia in category learning. Psychol. Learn. Motiv. 46, 1–36 (2006).

    Article  Google Scholar 

  20. Filoteo, J. V., Maddox, W. T., Salmon, D. P. & Song, D. D. Information-integration category learning in patients with striatal dysfunction. Neuropsychology 19, 212–222 (2005).

    Article  PubMed  Google Scholar 

  21. Knowlton, B. J., Mangels, J. A. & Squire, L. R. A neostriatal habit learning system in humans. Science 273, 1399–1402 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. Nomura, E. et al. Neural correlates of rule-based and information-integration visual category learning. Cereb. Cortex 17, 37–43 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Jeter, P. E., Dosher, B. A., Petrov, A. & Lu, Z.-L. Task precision at transfer determines specificity of perceptual learning. J. Vision. 9, 1–1 (2009).

    Article  Google Scholar 

  24. Simon, J. R., Sly, P. E. & Vilapakkam, S. Effect of compatibility of sr mapping on reactions toward the stimulus source. Acta Psychol. 47, 63–81 (1981).

    Article  CAS  Google Scholar 

  25. Ashby, F. G. & Townsend, J. T. Varieties of perceptual independence. Psychol. Rev. 93, 154–179 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. Ashby, F. G. & Soto, F. A. in The Oxford Handbook of Computational and Mathematical Psychology (eds Busemeyer, J. R., Townsend, J. T., Wang, A. & Eidels, A.) 13–34 (Oxford Univ. Press, New York, NY, 2015).

  27. Soto, F. A., Zheng, E., Fonseca, J. & Ashby, F. G. Testing separability and independence of perceptual dimensions with general recognition theory: a tutorial and new r package (grtools). Front. Psychol. 8, 696 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ashby, F. G., Ell, S. W. & Waldron, E. M. Procedural learning in perceptual categorization. Mem. Cogn. 31, 1114–1125 (2003).

    Article  Google Scholar 

  29. Maddox, W. T., Bohil, C. J. & Ing, A. D. Evidence for a procedural-learning-based system in perceptual category learning. Psychon. Bull. Rev. 11, 945–952 (2004).

    Article  PubMed  Google Scholar 

  30. Maddox, W. T., Glass, B. D., O’Brien, J. B., Filoteo, J. V. & Ashby, F. G. Category label and response location shifts in category learning. Psychol. Res. 74, 219–236 (2010).

    Article  PubMed  Google Scholar 

  31. Spiering, B. J. & Ashby, F. G. Response processes in information–integration category learning. Neurobiol. Learn. Mem. 90, 330–338 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Crossley, M. J. & Ashby, F. G. Procedural learning during declarative control. J. Exp. Psychol. Learn. Mem. Cogn. 41, 1388–1403 (2015).

    Article  PubMed  Google Scholar 

  33. Maddox, W. T., Ashby, F. G. & Bohil, C. J. Delayed feedback effects on rule-based and information-integration category learning. J. Exp. Psychol. Learn. Mem. Cogn. 29, 650 (2003).

    Article  PubMed  Google Scholar 

  34. Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Maddox, W. T. & Ing, A. D. Delayed feedback disrupts the procedural-learning system but not the hypothesis testing system in perceptual category learning. J. Exp. Psychol. Learn. Mem. Cogn. 31, 100–107 (2005).

    Article  PubMed  Google Scholar 

  36. Ashby, F. G. & Valentin, V. V. in Handbook of Categorization in Cognitive Science 2nd edn (eds Cohen, H.& Lefebvre, C.) 157–188 (Elsevier, New York, NY, 2017).

  37. Cantwell, G., Crossley, M. J. & Ashby, F. G. Multiple stages of learning in perceptual categorization: evidence and neurocomputational theory. Psychon. Bull. Rev. 22, 1598–1613 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heimer, L. The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide (Springer, New York, NY, 2012).

  39. Waldschmidt, J. G. & Ashby, F. G. Cortical and striatal contributions to automaticity in information-integration categorization. Neuroimage 56, 1791–1802 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gattass, R., Gross, C. & Sandell, J. Visual topography of v2 in the macaque. J. Comp. Neurol. 201, 519–539 (1981).

    Article  PubMed  CAS  Google Scholar 

  41. Hubel, D. H., Wiesel, T. N., Yeagle, E. M., Lafer-Sousa, R. & Conway, B. R. Binocular stereoscopy in visual areas v-2, v-3, and v-3a of the macaque monkey. Cereb. Cortex 25, 959–971 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yu, C., Klein, S. A. & Levi, D. M. Perceptual learning in contrast discrimination and the (minimal) role of context. J. Vision. 4, 4–4 (2004).

    Article  Google Scholar 

  43. Jeter, P. E., Dosher, B. A., Liu, S.-H. & Lu, Z.-L. Specificity of perceptual learning increases with increased training. Vision. Res. 50, 1928–1940 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hung, S.-C. & Seitz, A. R. Prolonged training at threshold promotes robust retinotopic specificity in perceptual learning. J. Neurosci. 34, 8423–8431 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Dill, M. & Fahle, M. The role of visual field position in pattern-discrimination learning. Proc. R. Soc. London Ser. B 264, 1031–1036 (1997).

    Article  CAS  Google Scholar 

  46. Nazir, T. A. & O’Regan, J. K. Some results on translation invariance in the human visual system. Spat. Vision. 5, 81–100 (1990).

    Article  CAS  Google Scholar 

  47. Fahle, M., Edelman, S. & Poggio, T. Fast perceptual learning in hyperacuity. Vision. Res. 35, 3003–3013 (1995).

    Article  PubMed  CAS  Google Scholar 

  48. Petrov, A. A., Dosher, B. A. & Lu, Z.-L. Perceptual learning without feedback in non-stationary contexts: data and model. Vision. Res. 46, 3177–3197 (2006).

    Article  PubMed  Google Scholar 

  49. Ashby, F. G., Queller, S. & Berretty, P. M. On the dominance of unidimensional rules in unsupervised categorization. Percept. Psychophys. 61, 1178–1199 (1999).

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, T., Xiao, L.-Q., Klein, S. A., Levi, D. M. & Yu, C. Decoupling location specificity from perceptual learning of orientation discrimination. Vision. Res. 50, 368–374 (2010).

    Article  PubMed  Google Scholar 

  51. Zhang, J.-Y. et al. Rule-based learning explains visual perceptual learning and its specificity and transfer. J. Neurosci. 30, 12323–12328 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kahnt, T., Grueschow, M., Speck, O. & Haynes, J.-D. Perceptual learning and decision-making in human medial frontal cortex. Neuron 70, 549–559 (2011).

    Article  PubMed  CAS  Google Scholar 

  53. Kumano, H. & Uka, T. Neuronal mechanisms of visual perceptual learning. Behav. Brain Res. 249, 75–80 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation Graduate Research Fellowship under grant no. 1650114, by NIH grant 2R01MH063760, and by NIH grant R01 EB018958. The funders had no role in the conceptualization, design, data collection, analysis, decision to publish, or preparation of the manuscript. Thanks to M. Casale, who worked on an earlier version of these experiments, and to M. Swiacki, A. Mar, B. Renard, K. Nunez, T. Timsit, E. Kim and C. Valtier for their assistance with data collection.

Author information

Authors and Affiliations

Authors

Contributions

L.A.R. and F.G.A. conceived and designed the experiment with input from M.P.E. L.A.R. managed data collection and analysed the data. L.A.R., M.P.E., and F.G.A. wrote the paper. All authors approved the final draft of the manuscript.

Corresponding author

Correspondence to F. Gregory Ashby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosedahl, L.A., Eckstein, M.P. & Ashby, F.G. Retinal-specific category learning. Nat Hum Behav 2, 500–506 (2018). https://doi.org/10.1038/s41562-018-0370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0370-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing