Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Consolidation and reconsolidation share behavioural and neurochemical mechanisms

Abstract

After encoding, memory traces are fragile and easily disrupted by new learning until they are stabilized through a process termed consolidation1,2. However, several studies have suggested that consolidation does not make memory traces permanently stable. The results of these studies support the theory that the retrieval of previously consolidated memory, termed reactivation, renders the memory traces labile again and subject to disruption by new learning unless they go through a further consolidation process, termed reconsolidation3,4,5,6,7,8. However, it remains controversial whether reactivation and reconsolidation occur at a human behavioural level9,10,11 and whether consolidation and reconsolidation have common mechanisms12,13. Here, we found that reconsolidation does occur after reactivation in visual perceptual learning14,15,16,17,18,19,20,21,22,23,24,25, a type of skill learning, in humans. Moreover, changes in behavioural performance, as well as in concentrations in the excitatory neurotransmitter glutamate and in the inhibitory neurotransmitter GABA (γ-aminobutyric acid), as measured by magnetic resonance spectroscopy, in early visual areas exhibit similar time courses during consolidation and reconsolidation. These results indicate that reconsolidation after reactivation and consolidation in humans share common behavioural and neurochemical mechanisms.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Procedures and results of study 1.
Fig. 2: Design and results of study 2.
Fig. 3: Design and results of study 3.

References

  1. 1.

    Alvarez, P. & Squire, L. R. Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl Acad. Sci. USA 91, 7041–7045 (1994).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Dudai, Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004).

    Article  PubMed  Google Scholar 

  3. 3.

    Dayan, E., Laor-Maayany, R. & Censor, N. Reward disrupts reactivated human skill memory. Sci. Rep. 6, 28270 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Monfils, M. H., Cowansage, K. K., Klann, E. & LeDoux, J. E. Extinction–reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324, 951–955 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. 5.

    Bjorkstrand, J. et al. Disrupting reconsolidation attenuates long-term fear memory in the human amygdala and facilitates approach behavior. Curr. Biol. 26, 2690–2695 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Nader, K., Schafe, G. E. & Le Doux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Walker, M. P., Brakefield, T., Hobson, J. A. & Stickgold, R. Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Robertson, E. M. New insights in human memory interference and consolidation. Curr. Biol. 22, R66–R71 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. 9.

    Wood, N. E. et al. Pharmacological blockade of memory reconsolidation in posttraumatic stress disorder: three negative psychophysiological studies. Psychiatry Res. 225, 31–39 (2015).

    Article  PubMed  Google Scholar 

  10. 10.

    Bos, M. G., Beckers, T. & Kindt, M. Noradrenergic blockade of memory reconsolidation: a failure to reduce conditioned fear responding. Front. Behav. Neurosci. 8, 412 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Hardwicke, T. E., Taqi, M. & Shanks, D. R. Postretrieval new learning does not reliably induce human memory updating via reconsolidation. Proc. Natl Acad. Sci. USA 113, 5206–5211 (2016).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Lee, J. L., Everitt, B. J. & Thomas, K. L. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839–843 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Debiec, J., Doyere, V., Nader, K. & Ledoux, J. E. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proc. Natl Acad. Sci. USA 103, 3428–3433 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl Acad. Sci. USA 88, 4966–4970 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401–406 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Dosher, B. A. & Lu, Z. L. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl Acad. Sci. USA 95, 13988–13993 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Yu, Q., Zhang, P., Qiu, J. & Fang, F. Perceptual learning of contrast detection in the human lateral geniculate nucleus. Curr. Biol. 26, 3176–3182 (2016).

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Amar-Halpert, R., Laor-Maayany, R., Nemni, S., Rosenblatt, J. & Censor, N. Memory reactivation improves visual perception. Nat. Neurosci. 20, 1325–1328 2017).

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Xiao, L. Q. et al. Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 18, 1922–1926 2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Watanabe, T. et al. Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nat. Neurosci. 5, 1003–1009 2002).

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Watanabe, T., Nanez, J. E. & Sasaki, Y. Perceptual learning without perception. Nature 413, 844–848 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Seitz, A. R. & Watanabe, T. Psychophysics: is subliminal learning really passive? Nature 422, 36 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Yotsumoto, Y., Watanabe, T. & Sasaki, Y. Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron 57, 827–833 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. 24.

    Shibata, K. et al. Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant. Nat. Neurosci. 20, 470–475 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Shibata, K., Watanabe, T., Sasaki, Y. & Kawato, M. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334, 1413–1415 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Nikolova, S., Stark, S. M. & Stark, C. E. 3T hippocampal glutamate–glutamine complex reflects verbal memory decline in aging. Neurobiol. Aging 54, 103–111 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Kim, S., Stephenson, M. C., Morris, P. G. & Jackson, S. R. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. NeuroImage 99, 237–243 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Stagg, C. J., Bachtiar, V. & Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol. 21, 480–484 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Stagg, C. J. Magnetic resonance spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. NeuroImage 86, 19–27 (2014).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Okubo, Y. et al. Imaging extrasynaptic glutamate dynamics in the brain. Proc. Natl Acad. Sci. USA 107, 6526–6531 (2010).

    Article  PubMed  Google Scholar 

  32. 32.

    Myers, J. F., Evans, C. J., Kalk, N. J., Edden, R. A. & Lingford-Hughes, A. R. Measurement of GABA using J-difference edited 1H-MRS following modulation of synaptic GABA concentration with tiagabine. Synapse 68, 355–362 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Watanabe, T. & Sasaki, Y. Perceptual learning: toward a comprehensive theory. Annu. Rev. Psychol. 66, 197–221 (2015).

    Article  PubMed  Google Scholar 

  34. 34.

    Sasaki, Y., Nanez, J. E. & Watanabe, T. Advances in visual perceptual learning and plasticity. Nat. Rev. Neurosci. 11, 53–60 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Hu, Y., Chen, X., Gu, H. & Yang, Y. Resting-state glutamate and GABA concentrations predict task-induced deactivation in the default mode network. J. Neurosci. 33, 18566–18573 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Mescher, M., Merkle, H., Kirsch, J., Garwood, M. & Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266–272 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Rothman, D. L., Behar, K. L., Hetherington, H. P. & Shulman, R. G. Homonuclear 1H double-resonance difference spectroscopy of the rat brain in vivo. Proc. Natl Acad. Sci. USA 81, 6330–6334 (1984).

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Robertson, C. E., Ratai, E. M. & Kanwisher, N. Reduced GABAergic action in the autistic brain. Curr. Biol. 26, 80–85 (2016).

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Hancu, I. Optimized glutamate detection at 3T. J. Magn. Reson. Imaging 30, 1155–1162 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Mullins, P. G., Chen, H., Xu, J., Caprihan, A. & Gasparovic, C. Comparative reliability of proton spectroscopy techniques designed to improve detection of J-coupled metabolites. Magn. Reson. Med. 60, 964–969 (2008).

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Tkac, I., Starcuk, Z., Choi, I. Y. & Gruetter, R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Provencher, S. W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679 (1993).

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Provencher, S. W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 14, 260–264 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (R01EY019466), the NSF (BCS 1539717) and the JSPS KAKENHI grant number 17H04789. The funding agencies had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

This work was conceived by J.W.B., S.M.F., T.W. and Y.S. J.W.B., K.S., S.M.F. and E.G.W. collected and analysed the data. J.W.B., K.S., S.M.F., E.G.W., M.W.G., T.W. and Y.S. wrote the manuscript.

Corresponding author

Correspondence to Takeo Watanabe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Supplementary Figures 1–2

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bang, J.W., Shibata, K., Frank, S.M. et al. Consolidation and reconsolidation share behavioural and neurochemical mechanisms. Nat Hum Behav 2, 507–513 (2018). https://doi.org/10.1038/s41562-018-0366-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing