Letter | Published:

Consolidation and reconsolidation share behavioural and neurochemical mechanisms

Nature Human Behaviourvolume 2pages507513 (2018) | Download Citation


After encoding, memory traces are fragile and easily disrupted by new learning until they are stabilized through a process termed consolidation1,2. However, several studies have suggested that consolidation does not make memory traces permanently stable. The results of these studies support the theory that the retrieval of previously consolidated memory, termed reactivation, renders the memory traces labile again and subject to disruption by new learning unless they go through a further consolidation process, termed reconsolidation3,4,5,6,7,8. However, it remains controversial whether reactivation and reconsolidation occur at a human behavioural level9,10,11 and whether consolidation and reconsolidation have common mechanisms12,13. Here, we found that reconsolidation does occur after reactivation in visual perceptual learning14,15,16,17,18,19,20,21,22,23,24,25, a type of skill learning, in humans. Moreover, changes in behavioural performance, as well as in concentrations in the excitatory neurotransmitter glutamate and in the inhibitory neurotransmitter GABA (γ-aminobutyric acid), as measured by magnetic resonance spectroscopy, in early visual areas exhibit similar time courses during consolidation and reconsolidation. These results indicate that reconsolidation after reactivation and consolidation in humans share common behavioural and neurochemical mechanisms.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Alvarez, P. & Squire, L. R. Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl Acad. Sci. USA 91, 7041–7045 (1994).

  2. 2.

    Dudai, Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004).

  3. 3.

    Dayan, E., Laor-Maayany, R. & Censor, N. Reward disrupts reactivated human skill memory. Sci. Rep. 6, 28270 (2016).

  4. 4.

    Monfils, M. H., Cowansage, K. K., Klann, E. & LeDoux, J. E. Extinction–reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324, 951–955 (2009).

  5. 5.

    Bjorkstrand, J. et al. Disrupting reconsolidation attenuates long-term fear memory in the human amygdala and facilitates approach behavior. Curr. Biol. 26, 2690–2695 (2016).

  6. 6.

    Nader, K., Schafe, G. E. & Le Doux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000).

  7. 7.

    Walker, M. P., Brakefield, T., Hobson, J. A. & Stickgold, R. Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620 (2003).

  8. 8.

    Robertson, E. M. New insights in human memory interference and consolidation. Curr. Biol. 22, R66–R71 (2012).

  9. 9.

    Wood, N. E. et al. Pharmacological blockade of memory reconsolidation in posttraumatic stress disorder: three negative psychophysiological studies. Psychiatry Res. 225, 31–39 (2015).

  10. 10.

    Bos, M. G., Beckers, T. & Kindt, M. Noradrenergic blockade of memory reconsolidation: a failure to reduce conditioned fear responding. Front. Behav. Neurosci. 8, 412 (2014).

  11. 11.

    Hardwicke, T. E., Taqi, M. & Shanks, D. R. Postretrieval new learning does not reliably induce human memory updating via reconsolidation. Proc. Natl Acad. Sci. USA 113, 5206–5211 (2016).

  12. 12.

    Lee, J. L., Everitt, B. J. & Thomas, K. L. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839–843 (2004).

  13. 13.

    Debiec, J., Doyere, V., Nader, K. & Ledoux, J. E. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proc. Natl Acad. Sci. USA 103, 3428–3433 (2006).

  14. 14.

    Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl Acad. Sci. USA 88, 4966–4970 (1991).

  15. 15.

    Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401–406 (1997).

  16. 16.

    Dosher, B. A. & Lu, Z. L. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl Acad. Sci. USA 95, 13988–13993 (1998).

  17. 17.

    Yu, Q., Zhang, P., Qiu, J. & Fang, F. Perceptual learning of contrast detection in the human lateral geniculate nucleus. Curr. Biol. 26, 3176–3182 (2016).

  18. 18.

    Amar-Halpert, R., Laor-Maayany, R., Nemni, S., Rosenblatt, J. & Censor, N. Memory reactivation improves visual perception. Nat. Neurosci. 20, 1325–1328 2017).

  19. 19.

    Xiao, L. Q. et al. Complete transfer of perceptual learning across retinal locations enabled by double training. Curr. Biol. 18, 1922–1926 2008).

  20. 20.

    Watanabe, T. et al. Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nat. Neurosci. 5, 1003–1009 2002).

  21. 21.

    Watanabe, T., Nanez, J. E. & Sasaki, Y. Perceptual learning without perception. Nature 413, 844–848 (2001).

  22. 22.

    Seitz, A. R. & Watanabe, T. Psychophysics: is subliminal learning really passive? Nature 422, 36 (2003).

  23. 23.

    Yotsumoto, Y., Watanabe, T. & Sasaki, Y. Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron 57, 827–833 (2008).

  24. 24.

    Shibata, K. et al. Overlearning hyperstabilizes a skill by rapidly making neurochemical processing inhibitory-dominant. Nat. Neurosci. 20, 470–475 (2017).

  25. 25.

    Shibata, K., Watanabe, T., Sasaki, Y. & Kawato, M. Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334, 1413–1415 (2011).

  26. 26.

    Nikolova, S., Stark, S. M. & Stark, C. E. 3T hippocampal glutamate–glutamine complex reflects verbal memory decline in aging. Neurobiol. Aging 54, 103–111 (2017).

  27. 27.

    Kim, S., Stephenson, M. C., Morris, P. G. & Jackson, S. R. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. NeuroImage 99, 237–243 (2014).

  28. 28.

    Stagg, C. J., Bachtiar, V. & Johansen-Berg, H. The role of GABA in human motor learning. Curr. Biol. 21, 480–484 (2011).

  29. 29.

    Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

  30. 30.

    Stagg, C. J. Magnetic resonance spectroscopy as a tool to study the role of GABA in motor-cortical plasticity. NeuroImage 86, 19–27 (2014).

  31. 31.

    Okubo, Y. et al. Imaging extrasynaptic glutamate dynamics in the brain. Proc. Natl Acad. Sci. USA 107, 6526–6531 (2010).

  32. 32.

    Myers, J. F., Evans, C. J., Kalk, N. J., Edden, R. A. & Lingford-Hughes, A. R. Measurement of GABA using J-difference edited 1H-MRS following modulation of synaptic GABA concentration with tiagabine. Synapse 68, 355–362 (2014).

  33. 33.

    Watanabe, T. & Sasaki, Y. Perceptual learning: toward a comprehensive theory. Annu. Rev. Psychol. 66, 197–221 (2015).

  34. 34.

    Sasaki, Y., Nanez, J. E. & Watanabe, T. Advances in visual perceptual learning and plasticity. Nat. Rev. Neurosci. 11, 53–60 (2010).

  35. 35.

    Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

  36. 36.

    Hu, Y., Chen, X., Gu, H. & Yang, Y. Resting-state glutamate and GABA concentrations predict task-induced deactivation in the default mode network. J. Neurosci. 33, 18566–18573 (2013).

  37. 37.

    Mescher, M., Merkle, H., Kirsch, J., Garwood, M. & Gruetter, R. Simultaneous in vivo spectral editing and water suppression. NMR Biomed. 11, 266–272 (1998).

  38. 38.

    Rothman, D. L., Behar, K. L., Hetherington, H. P. & Shulman, R. G. Homonuclear 1H double-resonance difference spectroscopy of the rat brain in vivo. Proc. Natl Acad. Sci. USA 81, 6330–6334 (1984).

  39. 39.

    Robertson, C. E., Ratai, E. M. & Kanwisher, N. Reduced GABAergic action in the autistic brain. Curr. Biol. 26, 80–85 (2016).

  40. 40.

    Hancu, I. Optimized glutamate detection at 3T. J. Magn. Reson. Imaging 30, 1155–1162 (2009).

  41. 41.

    Mullins, P. G., Chen, H., Xu, J., Caprihan, A. & Gasparovic, C. Comparative reliability of proton spectroscopy techniques designed to improve detection of J-coupled metabolites. Magn. Reson. Med. 60, 964–969 (2008).

  42. 42.

    Tkac, I., Starcuk, Z., Choi, I. Y. & Gruetter, R. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656 (1999).

  43. 43.

    Provencher, S. W. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679 (1993).

  44. 44.

    Provencher, S. W. Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed. 14, 260–264 (2001).

Download references


This work was supported by the NIH (R01EY019466), the NSF (BCS 1539717) and the JSPS KAKENHI grant number 17H04789. The funding agencies had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript.

Author information

Author notes

    • Ji Won Bang

    Present address: Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA

    • Kazuhisa Shibata

    Present address: Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City, Japan

  1. These authors contributed equally: Ji Won Bang, Kazuhisa Shibata, Sebastian M. Frank.


  1. Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA

    • Ji Won Bang
    • , Kazuhisa Shibata
    • , Sebastian M. Frank
    • , Takeo Watanabe
    •  & Yuka Sasaki
  2. Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany

    • Sebastian M. Frank
    •  & Mark W. Greenlee
  3. Department of Neuroscience, Brown University, Providence, RI, USA

    • Edward G. Walsh
    • , Takeo Watanabe
    •  & Yuka Sasaki


  1. Search for Ji Won Bang in:

  2. Search for Kazuhisa Shibata in:

  3. Search for Sebastian M. Frank in:

  4. Search for Edward G. Walsh in:

  5. Search for Mark W. Greenlee in:

  6. Search for Takeo Watanabe in:

  7. Search for Yuka Sasaki in:


This work was conceived by J.W.B., S.M.F., T.W. and Y.S. J.W.B., K.S., S.M.F. and E.G.W. collected and analysed the data. J.W.B., K.S., S.M.F., E.G.W., M.W.G., T.W. and Y.S. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Takeo Watanabe.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–3 and Supplementary Figures 1–2

  2. Reporting Summary

About this article

Publication history