Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for a conserved quantity in human mobility

Abstract

Recent seminal works on human mobility have shown that individuals constantly exploit a small set of repeatedly visited locations1,2,3. A concurrent study has emphasized the explorative nature of human behaviour, showing that the number of visited places grows steadily over time4,5,6,7. How to reconcile these seemingly contradicting facts remains an open question. Here, we analyse high-resolution multi-year traces of ~40,000 individuals from 4 datasets and show that this tension vanishes when the long-term evolution of mobility patterns is considered. We reveal that mobility patterns evolve significantly yet smoothly, and that the number of familiar locations an individual visits at any point is a conserved quantity with a typical size of ~25. We use this finding to improve state-of-the-art modelling of human mobility4,8. Furthermore, shifting the attention from aggregated quantities to individual behaviour, we show that the size of an individual’s set of preferred locations correlates with their number of social interactions. This result suggests a connection between the conserved quantity we identify, which as we show cannot be understood purely on the basis of time constraints, and the ‘Dunbar number’9,10 describing a cognitive upper limit to an individual’s number of social relations. We anticipate that our work will spark further research linking the study of human mobility and the cognitive and behavioural sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activity set and exploration of new locations.
Fig. 2: Conserved size of evolving activity sets.
Fig. 3: Evolution of activity sets and conservation of time allocation.
Fig. 4: Correlation between location capacity and social network size.

Similar content being viewed by others

References

  1. Song, C., Qu, Z., Blumm, N. & Barabási, A.-L. Limits of predictability in human mobility. Science 327, 1018–1021 (2010).

    Article  PubMed  CAS  Google Scholar 

  2. Schwanen, T., Kwan, M.-P. & Ren, F. How fixed is fixed? Gendered rigidity of space–time constraints and geographies of everyday activities. Geoforum 39, 2109–2121 (2008).

    Article  Google Scholar 

  3. Golledge, R. G. Spatial Behavior: A Geographic Perspective (Guilford Press, London & New York, NY, 1997).

  4. Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human mobility. Nat. Phys. 6, 818–823 (2010).

    Article  CAS  Google Scholar 

  5. Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    Article  PubMed  CAS  Google Scholar 

  6. Pappalardo, L. et al. Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 8166 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alessandretti, L., Sapiezynski, P., Lehmann, S. & Baronchelli, A. Multi-scale spatio-temporal analysis of human mobility. PLoS ONE 12, e0171686 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jiang, S. et al. The TimeGeo modeling framework for urban motility without travel surveys.Proc. Natl Acad. Sci. USA 113, E5370–E5378 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Dunbar, R. I. Coevolution of neocortical size, group size and language in humans. Behav. Brain Sci. 16, 681–694 (1993).

    Article  Google Scholar 

  10. Gonçalves, B., Perra, N. & Vespignani, A. Modeling users’ activity on twitter networks: validation of Dunbar’s number. PLoS ONE 6, e22656 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sarason, I. G., Johnson, J. H. & Siegel, J. M.Assessing the impact of life changes: development of the life experiences survey. J. Consult. Clin. Psychol. 46, 932–946 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. Hägerstraand, T. What about people in regional science? Pap. Reg. Sci. 24, 7–24 (1970).

    Article  Google Scholar 

  13. Burns, L. D. Transportation, Temporal, and Spatial Components of Accessibility (Lexington Books, Lexington, 1980).

  14. Csáji, B. C. et al. Exploring the mobility of mobile phone users. Phys. A Stat. Mech. Appl. 392, 1459–1473 (2013).

    Article  Google Scholar 

  15. Sevtsuk, A. & Ratti, C. Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks. J. Urban Technol. 17, 41–60 (2010).

    Article  Google Scholar 

  16. Cho, E., Myers, S. A. & Leskovec, J. Friendship and mobility: user movement in location-based social networks. In Proc. 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1082–1090 (ACM, 2011).

  17. Cheng, Z., Caverlee, J., Lee, K. & Sui, D. Z. Exploring millions of footprints in location sharing services. In Proc. 5th International AAAI Conference on Weblogs and Social Media 81–88 (AAAI, 2011).

  18. Brown, C., Lathia, N., Mascolo, C., Noulas, A. & Blondel, V. Group colocation behavior in technological social networks. PLoS ONE 9, e105816 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Noulas, A., Scellato, S., Lambiotte, R., Pontil, M. & Mascolo, C. A tale of many cities: universal patterns in human urban mobility. PLoS ONE 7, e37027 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bapierre, H., Jesdabodi, C. & Groh, G. Mobile homophily and social location prediction. Preprint at https://arxiv.org/abs/1506.07763 (2015).

  21. Giannotti, F. et al. Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 20, 695–719 (2011).

    Article  Google Scholar 

  22. Scellato, S., Musolesi, M., Mascolo, C., Latora, V. & Campbell, A. T. in Pervasive Computing. Pervasive 2011. Lecture Notes in Computer Science Vol. 6696 (eds Lyons K., Hightower J. & Huang E. M.) 152–169 (Springer, Berlin & Heidelberg, 2011).

  23. Liang, X., Zheng, X., Lv, W., Zhu, T. & Xu, K. The scaling of human mobility by taxis is exponential. Phys. A Stat. Mech. Appl. 391, 2135–2144 (2012).

    Article  Google Scholar 

  24. Gallotti, R., Bazzani, A. & Rambaldi, S.Towards a statistical physics of human mobility.Int. J. Modern Phys. C 23, 1250061 (2012).

    Article  Google Scholar 

  25. Bazzani, A., Giorgini, B., Rambaldi, S., Gallotti, R. & Giovannini, L. Statistical laws in urban mobility from microscopic GPS data in the area of Florence. J. Stat. Mech. Theory Exp. 2010, P05001 (2010).

    Article  Google Scholar 

  26. Jiang, B., Yin, J. & Zhao, S. Characterizing the human mobility pattern in a large street network. Phys. Rev. E 80, 021136 (2009).

    Article  CAS  Google Scholar 

  27. Mülligann, C., Janowicz, K., Ye, M. & Lee, W.-C. Analyzing the spatial–semantic interaction of points of interest in volunteered geographic information. In Proc. International Conference on Spatial Information Theory 350–370 (Springer, 2011).

  28. Phithakkitnukoon, S., Horanont, T., Di Lorenzo, G., Shibasaki, R. & Ratti, C. Activity-aware map: identifying human daily activity pattern using mobile phone data. In Int. Workshop on Human Behavior Understanding 14–25 (Springer, 2010).

  29. Isaacman, S. et al. Identifying important places in people’s lives from cellular network data. In Pervasive Computing. Pervasive 2011. Lecture Notes in Computer Science Vol. 6696 (eds Lyons K., Hightower J. & Huang E. M.) 133–151 (Springer, Berlin & Heidelberg, 2011).

  30. Schneider, C. M., Belik, V., Couronné, T., Smoreda, Z. & González, M. C. Unravelling daily human mobility motifs. J. R. Soc. Interface 10, 20130246 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bagrow, J. P. & Lin, Y.-R. Mesoscopic structure and social aspects of human mobility. PLoS ONE 7, e37676 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ranjan, G., Zang, H., Zhang, Z.-L. & Bolot, J. Are call detail records biased for sampling human mobility? ACM SIGMOBILE Mob. Comput. Commun. Rev. 16, 33–44 (2012).

    Article  Google Scholar 

  33. Zang, H. & Bolot, J. Anonymization of location data does not work: a large-scale measurement study. In Proc. 17th Annual International Conference on Mobile Computing and Networking 145–156 (ACM, 2011).

  34. Kossinets, G. & Watts, D. J. Empirical analysis of an evolving social network. Science 311, 88–90 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Kossinets, G. & Watts, D. J. Origins of homophily in an evolving social network 1. Am. J. Sociol. 115, 405–450 (2009).

    Article  Google Scholar 

  36. Romero, D. M., Meeder, B., Barash, V. & Kleinberg, J. Maintaining ties on social media sites: the competing effects of balance, exchange, and betweenness. In Proc. 5th International AAAI Conference on Weblogs and Social Media (AAAI, 2011).

  37. Martin, J. L. & Yeung, K.-T. Persistence of close personal ties over a 12-year period. Soc. Networks 28, 331–362 (2006).

    Article  Google Scholar 

  38. Miritello, G., Lara, R., Cebrian, M. & Moro, E.Limited communication capacity unveils strategies for human interaction.Sci. Rep. 3, 1950 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Saramäki, J. et al. Persistence of social signatures in human communication. Proc. Natl Acad. Sci. USA 111, 942–947 (2014).

    Article  PubMed  CAS  Google Scholar 

  40. Burt, R. S. Decay functions. Soc. Networks 22, 1–28 (2000).

    Article  Google Scholar 

  41. Arnaboldi, V., Conti, M., Passarella, A. & Dunbar, R. Dynamics of personal social relationships in online social networks: a study on twitter. In Proc. 1st ACM Conference on Online Social Networks 15–26 (ACM, 2013).

  42. Isaacman, S. et al. Human mobility modeling at metropolitan scales. In Proc. 10th International Conference on Mobile Systems, Applications, and Services 239–252 (ACM, 2012).

  43. Lee, K., Hong, S., Kim, S. J., Rhee, I. & Chong, S. SLAW: a new mobility model for human walks. In Proc. IEEE INFOCOM 2009 855–863 (IEEE, 2009).

  44. Kim, M., Kotz, D. & Kim, S. Extracting a mobility model from real user traces. In Proc. 25th IEEE International Conference on Computer Communications 1–13 (IEEE, 2006).

  45. Jia, T., Jiang, B., Carling, K., Bolin, M. & Ban, Y. An empirical study on human mobility and its agent-based modeling. J. Stat. Mech. Theory Exp. 2012, P11024 (2012).

    Article  Google Scholar 

  46. Han, X.-P., Hao, Q., Wang, B.-H. & Zhou, T. Origin of the scaling law in human mobility: hierarchy of traffic systems. Phys. Rev. E 83, 036117 (2011).

    Article  CAS  Google Scholar 

  47. Pappalardo, L., Rinzivillo, S. & Simini, F.Human mobility modelling: exploration and preferential return meet the gravity model. Procedia Comput. Sci. 83, 934–939 (2016).

    Article  Google Scholar 

  48. Stopczynski, A. et al. Measuring large-scale social networks with high resolution. PLoS ONE 9, e95978 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kiukkonen, N., Blom, J., Dousse, O., Gatica-Perez, D. & Laurila, J. Towards rich mobile phone datasets: Lausanne Data Collection Campaign. In Proc. ACM International Conference on Pervasive Services (ICPS, 2010).

  50. Laurila, J. K. et al. The mobile data challenge: big data for mobile computing research. In Proc. Workshop on the Nokia Mobile Data Challenge, in Conjunction with the 10th International Conference on Pervasive Computing EPFL-CONF-192489 (2012).

  51. Eagle, N. & Pentland, A. S. Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10, 255–268 (2006).

    Article  Google Scholar 

  52. Eagle, N., Pentland, A. S. & Lazer, D. Inferring friendship network structure by using mobile phone data. Proc. Natl. Acad. Sci. USA 106, 15274–15278 (2009).

    Article  PubMed  Google Scholar 

  53. Çolak, S., Alexander, L. P., Alvim, B. G., Mehndiretta, S. R. & González, M. C. Analyzing cell phone location data for urban travel: current methods, limitations and opportunities. In Proc. Transportation Research Board 94th Annual Meeting 15-5279 (2015).

  54. Lenormand, M. et al. Influence of sociodemographic characteristics on human mobility. Preprint at https://arxiv.org/abs/1411.7895 (2014).

  55. Heaps, H. S. Information Retrieval: Computational and Theoretical Aspects (Academic Press, Orlando, 1978).

  56. Horton, F. E. & Reynolds, D. R. Effects of urban spatial structure on individual behavior. Econ. Geogr. 47, 36–48 (1971).

    Article  Google Scholar 

  57. Mazey, M. E. The effect of a physio-political barrier upon urban activity space.Ohio J. Sci. 81, 212–217 2981).

    Google Scholar 

  58. Yuan, Y. & Raubal, M. Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study. Int. J. Geogr. Inf. Sci. 30, 1594–1621 (2016).

    Article  Google Scholar 

  59. Sherman, J. E., Spencer, J., Preisser, J. S., Gesler, W. M. & Arcury, T. A. A suite of methods for representing activity space in a healthcare accessibility study. Int. J. Health Geogr. 4, 24 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhou, C., Bhatnagar, N., Shekhar, S. & Terveen, L. Mining personally important places from GPS tracks. In Proc. 2007 IEEE 23rd International Conference on Data Engineering Workshop 517–526 (IEEE, 2007).

  61. Barbosa, H., de Lima-Neto, F. B., Evsukoff, A. & Menezes, R. The effect of recency to human mobility. EPJ Data Sci. 4, 21 (2015).

    Article  Google Scholar 

  62. Szell, M., Sinatra, R., Petri, G., Thurner, S. & Latora, V.Understanding mobility in a social petri dish.Sci. Rep. 2, 457 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Axhausen, K. W. Activity spaces, biographies, social networks and their welfare gains and externalities: some hypotheses and empirical results. Mobilities 2, 15–36 (2007).

    Article  Google Scholar 

  64. Costa, P. T. & McCrae, R. R. Four ways five factors are basic. Pers. Individ. Diff. 13, 653–665 (1992).

    Article  Google Scholar 

  65. Kalish, Y. & Robins, G. Psychological predispositions and network structure: the relationship between individual predispositions, structural holes and network closure. Soc. Networks 28, 56–84 (2006).

    Article  Google Scholar 

  66. Pollet, T. V., Roberts, S. G. & Dunbar, R. I.Extraverts have larger social network layers: but do not feel emotionally closer to individuals at any layer.J. Individ. Diff. 32, 161–169 (2011).

    Article  Google Scholar 

  67. Eagle, N. The Reality Mining Data (Massachusetts Institute of Technology, 2010).

  68. Sapiezynski, P., Gatej, R., Mislove, A. & Lehmann, S. Opportunities and challenges in crowdsourced wardriving. In Proc. 2015 Internet Measurement Conference 267–273 (ACM, 2015).

  69. John, O. P. & Srivastava, S. in Handbook of Personality: Theory and Research 2nd edn (eds Pervin, L. & John, O. P.) 102–138 (Guilford, New York, NY, 1999).

  70. Cuttone, A., Lehmann, S. & Larsen, J. E. Inferring human mobility from sparse low accuracy mobile sensing data. In Proc. 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication 995–1004 (ACM, 2014).

  71. Laurila, J. K. et al. From big smartphone data to worldwide research: the Mobile Data Challenge. Pervasive Mob. Comput. 9, 752–771 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Villum Foundation (High Resolution Networks project, for which S.L. is the principal investigator), a UCPH-2016 grant (Social Fabric project, for which S.L. is a co-principal investigator) and the Danish Council for Independent Research (Microdynamics of Influence in Social Systems project, for which S.L. is the principal investigator; grant ID 4184-00556). Portions of the research in this paper used the MDC Database made available by the Idiap Research Institute, Switzerland and owned by Nokia. V.S. was supported by Sony Mobile Communications. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. V.S. thanks H. Jonsson for invaluable technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

L.A., S.L. and A.B. designed the research. L.A., P.S. and V.S. pre-processed the data. L.A. performed the data analysis. L.A., S.L. and A.B. analysed the results and wrote the paper.

Corresponding authors

Correspondence to Sune Lehmann or Andrea Baronchelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Figures 1–38, Supplementary Tables 1–7, Supplementary References 1–16

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessandretti, L., Sapiezynski, P., Sekara, V. et al. Evidence for a conserved quantity in human mobility. Nat Hum Behav 2, 485–491 (2018). https://doi.org/10.1038/s41562-018-0364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0364-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing