Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hindcasting global population densities reveals forces enabling the origin of agriculture


The development and spread of agriculture changed fundamental characteristics of human societies1,2,3. However, the degree to which environmental and social conditions enabled the origins of agriculture remains contested4,5,6. We test three hypothesized links between the environment, population density and the origins of plant and animal domestication, a prerequisite for agriculture: (1) domestication arose as environmental conditions improved and population densities increased7 (surplus hypothesis); (2) populations needed domestication to overcome deteriorating environmental conditions (necessity hypothesis)8,9; (3) factors promoting domestication were distinct in each location10 (regional uniqueness hypothesis). We overcome previous data limitations with a statistical model, in which environmental, geographic and cultural variables capture 77% of the variation in population density among 220 foraging societies worldwide. We use this model to hindcast potential population densities across the globe from 21,000 to 4,000 years before present. Despite the timing of domestication varying by thousands of years, we show that improving environmental conditions favoured higher local population densities during periods when domestication arose in every known agricultural origin centre. Our results uncover a common, global factor that facilitated one of humanity’s most significant innovations and demonstrate that modelling ancestral demographic changes can illuminate major events deep in human history.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Path diagram for piecewise-SEM exploring the effects of environmental and cultural variables on population densities of foraging societies.
Fig. 2: Predictions of potential population density for foragers.
Fig. 3: Potential population density trends and the emergence of domestication.


  1. 1.

    Peoples, H. C. & Marlowe, F. W. Subsistence and the evolution of religion. Hum. Nat. 23, 253–269 (2012).

    Article  PubMed  Google Scholar 

  2. 2.

    Diamond, J. & Bellwood, P. Farmers and their languages: the first expansions. Science 300, 597–603 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. 3.

    Currie, T. E. & Mace, R. Political complexity predicts the spread of ethnolinguistic groups. Proc. Natl Acad. Sci. USA 106, 7339–7344 (2009).

    Article  PubMed  Google Scholar 

  4. 4.

    Richerson, P. J., Boyd, R. & Bettinger, R. L. Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Am. Antiq. 66, 387–411 (2001).

    Article  Google Scholar 

  5. 5.

    Hayden, B. The proof is in the pudding: feasting and the origins of domestication. Curr. Anthropol. 50, 597–601 (2009).

    Article  PubMed  Google Scholar 

  6. 6.

    Bellwood, P. First Farmers: The Origin of Agricultural Societies (Blackwell, Malden, MA, 2005).

    Google Scholar 

  7. 7.

    Cohen, M. N. Food Crisis in Prehistory: Overpopulation and the Origins of Agriculture. (Yale Univ. Press, New Haven, CT, 1977).

    Google Scholar 

  8. 8.

    Bar-Yosef, O. The Natufian culture in the Levant, threshold to the origins of agriculture. Evol. Anthropol. Issues News Rev. 6, 159–177 (1998).

    Article  Google Scholar 

  9. 9.

    Moore, A. M. T. & Hillman, G. C. The Pleistocene to Holocene transition and human economy in Southwest Asia: the impact of the Younger Dryas. Am. Antiq. 57, 482–494 (1992).

    Article  Google Scholar 

  10. 10.

    Zeder, M. A. & Smith, B. D. A conversation on agricultural origins. Curr. Anthropol. 50, 681–690 (2009).

    Article  Google Scholar 

  11. 11.

    Larson, G. et al. Current perspectives and the future of domestication studies. Proc. Natl Acad. Sci. USA 111, 6139–6146 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Smith, B. D. Low-level food production. J. Archaeol. Res. 9, 1–43 (2001).

    Article  Google Scholar 

  13. 13.

    Richerson, P. J., Boyd, R. & Bettinger, R. L. Cultural innovations and demographic change. Hum. Biol. 81, 211–235 (2009).

    Article  PubMed  Google Scholar 

  14. 14.

    Boserup, E. The Conditions of Agricultural Progress (Aldine Publishing Company, Chicago, IL, 1965).

    Google Scholar 

  15. 15.

    Cunniff, J., Charles, M., Jones, G. & Osborne, C. P. Was low atmospheric CO2 a limiting factor in the origin of agriculture? Environ. Archaeol. 15, 113–123 (2010).

    Article  Google Scholar 

  16. 16.

    Piperno, D. R., Holst, I., Winter, K. & McMillan, O. Teosinte before domestication: experimental study of growth and phenotypic variability in Late Pleistocene and Early Holocene environments. Quat. Int. 363, 65–77 (2015).

    Article  Google Scholar 

  17. 17.

    Binford, L. R. S. R. Binford & L. R. Binford. in New Perspectives in Archeology 313–341 (Aldine Publishing, Chicago, IL, 1968).

  18. 18.

    Flannery, K. V., Ucko, P. J. & Dimbleby, G. W. The Domestication and Exploitation of Plants and Animals 73–100 (Duckworth, London, 1969).

  19. 19.

    Binford, L. R. Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnogrpahic and Environmental Data Sets. (Univ. California Press, Berkeley, CA, 2001).

    Google Scholar 

  20. 20.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  21. 21.

    Lima-Ribeiro, M. S. et al. EcoClimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers. Inform. 10, 1–21 (2015).

    Article  Google Scholar 

  22. 22.

    Atkinson, Q. D., Gray, R. D. & Drummond, A. J. mtDNA variation predicts population size in humans and reveals a major southern Asian chapter in human prehistory. Mol. Biol. Evol. 25, 468–474 (2008).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Goldewijk, K. K., Beusen, A. & Janssen, P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene 20, 565–573 (2010).

    Article  Google Scholar 

  24. 24.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  25. 25.

    Harcourt, A. H. Human Biogeography (Univ. California Press, Berkeley, CA, 2012).

    Book  Google Scholar 

  26. 26.

    Kelly, R. L. The Lifeways of Hunter-Gatherers: The Foraging Spectrum (Cambridge Univ. Press, Cambridge, 2013).

    Book  Google Scholar 

  27. 27.

    Hassan, F. A. S., Polgar Population, Ecology, and Social Evolution. 27–52 (Mouton: Berlin, 1975).

    Google Scholar 

  28. 28.

    Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Molec. Ecol. 23, 259–268 (2014).

    Article  Google Scholar 

  29. 29.

    Marlowe, F. W. Hunter-gatherers and human evolution. Evol. Anthropol. Issues News Rev. 14, 54–67 (2005).

    Article  Google Scholar 

  30. 30.

    Belovsky, G. E. An optimal foraging-based model of hunter-gatherer population dynamics. J. Anthropol. Archaeol. 7, 329–372 (1988).

    Article  Google Scholar 

  31. 31.

    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).

    Article  CAS  Google Scholar 

  32. 32.

    Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA 104, 5925–5930 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Hayden, B. in Last Hunters–First Farmers: New Perspectives on the Prehistoric Transition to Agriculture (eds Price, T. D. & Gebauer, A. B.) Ch. 10 (School of American Research Press, Santa Fe, NM, 1995).

  36. 36.

    Binford, L. R. & Johnson, A. L. Documentation for Program for Calculating Environmental and Hunter-Gatherer Frames of Reference (ENVCALC2) (2006).

  37. 37.

    Kirby, K. R. et al. D-PLACE: a global database of cultural, linguistic and environmental diversity. PLoS ONE 11, e0158391 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    Google Scholar 

  39. 39.

    Becker, J. J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod. 32, 355–371 (2009).

    Article  Google Scholar 

  40. 40.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Raîche, G., Walls, T. A., Magis, D., Riopel, M. & Blais, J.-G. Non-graphical solutions for Cattell’s scree test. Methodol. Eur. J. Res. Methods Behav. Soc. Sci. 9, 23–29 (2013).

    Google Scholar 

  42. 42.

    Botero, C. A. et al. The ecology of religious beliefs. Proc. Natl Acad. Sci. USA 111, 16784–16789 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  44. 44.

    Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R. & Wilson, J. D. Analysis of population trends for farmland birds using generalized additive models. Ecology 81, 1970–1984 (2000).

    Article  Google Scholar 

  45. 45.

    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).

    Article  Google Scholar 

  46. 46.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  47. 47.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling (2016);

  48. 48.

    Bivand, R. maptools: Tools for Reading and Handling Spatial Objects (2017);

  49. 49.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  50. 50.

    Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).

    Article  Google Scholar 

Download references


This material is based on work supported by the National Science Foundation under grant no. 1519987. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information




M.C.G. secured funding. P.H.K., H.J.H., B.V., C.B. and M.C.G. contributed to the study design. M.L.-R. provided palaeoclimate data. P.H.K., B.V. and T.T. conducted analyses. P.H.K. wrote the initial draft of the manuscript and all authors contributed to revisions.

Corresponding author

Correspondence to Patrick H. Kavanagh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–6

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kavanagh, P.H., Vilela, B., Haynie, H.J. et al. Hindcasting global population densities reveals forces enabling the origin of agriculture. Nat Hum Behav 2, 478–484 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing