Abstract
In younger adults, arousal amplifies attentional focus to the most salient or goal-relevant information while suppressing other information. A computational model of how the locus coeruleus–noradrenaline system can implement this increased selectivity under arousal and a functional magnetic resonance imaging (fMRI) study comparing how arousal affects younger and older adults’ processing indicate that the amplification of salient stimuli and the suppression of non-salient stimuli are separate processes, with ageing affecting suppression without affecting amplification under arousal. In the fMRI study, arousal increased processing of salient stimuli and decreased processing of non-salient stimuli for younger adults. By contrast, for older adults, arousal increased processing of both low- and high-salience stimuli, generally increasing excitatory responses to visual stimuli. Older adults also showed a decline in locus coeruleus functional connectivity with frontoparietal networks that coordinate attentional selectivity. Thus, among older adults, arousal increases the potential for distraction from non-salient stimuli.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Feasibility of a telephone-delivered educational intervention for knowledge transfer of COVID-19-related information to older adults in Hong Kong: a pre–post-pilot study
Pilot and Feasibility Studies Open Access 06 October 2022
-
Plasma nervonic acid levels were negatively associated with attention levels in community-living older adults in New Zealand
Metabolomics Open Access 16 July 2022
-
Lower novelty-related locus coeruleus function is associated with Aβ-related cognitive decline in clinically healthy individuals
Nature Communications Open Access 23 March 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout







References
Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).
Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39, e200 (2016).
Mather, M. & Sutherland, M. R. Arousal-biased competition in perception and memory. Perspect. Psychol. Sci. 6, 114–133 (2011).
Lee, T. H., Sakaki, M., Cheng, R., Velasco, R. & Mather, M. Emotional arousal amplifies the effects of biased competition in the brain. Soc. Cogn. Affect. Neurosci. 9, 2067–2077 (2014).
Sutherland, M. R. & Mather, M. Negative arousal amplifies the effects of saliency in short-term memory. Emotion 12, 1367–1372 (2012).
Samuels, E. R. & Szabadi, E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr. Neuropharmacol. 6, 235–253 (2008).
Womelsdorf, T. & Everling, S. Long-range attention networks: circuit motifs underlying endogenously controlled stimulus selection. Trends Neurosci. 38, 682–700 (2015).
Zhang, S. et al. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).
Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).
Guedj, C., Meunier, D., Meunier, M. & Hadj-Bouziane, F. Could LC-NE-dependent adjustment of neural gain drive functional brain network reorganization?. Neural Plast. 2017, 4328015 (2017).
Hernaus, D., Casales Santa, M. M., Offermann, J. S. & Van Amelsvoort, T. Noradrenaline transporter blockade increases fronto-parietal functional connectivity relevant for working memory. Eur. Neuropsychopharmacol. 27, 399–410 (2017).
Strange, B. A. & Dolan, R. J. β-Adrenergic modulation of oddball responses in humans. Behav. Brain Funct. 3, 29 (2007).
Bigham, M. H. & Lidow, M. S. Adrenergic and serotonergic receptors in aged monkey neocortex. Neurobiol. Aging 16, 91–104 (1995).
Moore, T. L. et al. Cognitive impairment in aged rhesus monkeys associated with monoamine receptors in the prefrontal cortex. Behav. Brain Res. 160, 208–221 (2005).
Berchtold, N. C. et al. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease. Neurobiol. Aging 34, 1653–1661 (2013).
Erraji-Benchekroun, L. et al. Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. Biol. Psychiatry 57, 549–558 (2005).
Rozycka, A. & Liguz‐Lecznar, M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 16, 634–643 (2017).
Kann, O., Papageorgiou, I. E. & Draguhn, A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J. Cereb. Blood Flow. Metab. 34, 1270–1282 (2014).
Hua, T., Kao, C., Sun, Q., Li, X. & Zhou, Y. Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex. Brain Res. Bull. 75, 119–125 (2008).
Spiegel, A. M., Koh, M. T., Vogt, N. M., Rapp, P. R. & Gallagher, M. Hilar interneuron vulnerability distinguishes aged rats with memory impairment. J. Comp. Neurol. 521, 3508–3523 (2013).
Braak, H. & Braak, E. Ratio of pyramidal cells versus non-pyramidal cells in the human frontal isocortex and changes in ratio with ageing and Alzheimer’s disease. Prog. Brain Res. 70, 185–212 (1986).
Stanley, E. M., Fadel, J. R. & Mott, D. D. Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol. Aging 33, 431.e1–431.e13 (2012).
Avelar-Pereira, B., Bäckman, L., Wåhlin, A., Nyberg, L. & Salami, A. Age-related differences in dynamic interactions among default mode, frontoparietal control, and dorsal attention networks during resting-state and interference resolution. Front. Aging Neurosci. 9, 152 (2017).
DuPre, E. & Spreng, R. N. Structural covariance networks across the life span, from 6 to 94 years of age. Netw. Neurosci. 1, 302–323 (2017).
Grady, C., Sarraf, S., Saverino, C. & Campbell, K. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiol. Aging 41, 159–172 (2016).
Mitchell, K. J., Ankudowich, E., Durbin, K. A., Greene, E. J. & Johnson, M. K. Age-related differences in agenda-driven monitoring of format and task information. Neuropsychologia 51, 2427–2441 (2013).
Nashiro, K., Sakaki, M., Braskie, M. N. & Mather, M. Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol. Aging 54, 152–162 (2017).
Siman-Tov, T. et al. Early age-related functional connectivity decline in high-order cognitive networks. Front. Aging Neurosci. 8, 330 (2017).
Downing, P. E., Chan, A. W. Y., Peelen, M. V., Dodds, C. M. & Kanwisher, N. Domain specificity in visual cortex. Cereb. Cortex 16, 1453–1461 (2006).
Slaney, T. R., Mabrouk, O. S., Porter-Stransky, K. A., Aragona, B. J. & Kennedy, R. T. Chemical gradients within brain extracellular space measured using low flow push–pull perfusion sampling in vivo. ACS Chem. Neurosci. 4, 321–329 (2013).
Harley, C. W., Lalies, M. D. & Nutt, D. J. Estimating the synaptic concentration of norepinephrine in dentate gyrus which produces β-receptor mediated long-lasting potentiation in vivo using microdialysis and intracerebroventricular norepinephrine. Brain Res. 710, 293–298 (1996).
Salgado, H., Kohr, G. & Trevino, M. Noradrenergic ‘tone’ determines dichotomous control of cortical spike-timing-dependent plasticity. Sci. Rep. 2, 417 (2012).
Ferrero, J. J. et al. β-Adrenergic receptors activate exchange protein directly activated by cAMP (Epac), translocate Munc13-1, and enhance the Rab3A–Rim1α interaction to potentiate glutamate release at cerebrocortical nerve terminals. J. Biol. Chem. 288, 31370–31385 (2013).
Nai, Q., Dong, H.-W., Hayar, A., Linster, C. & Ennis, M. Noradrenergic regulation of GABAergic inhibition of main olfactory bulb mitral cells varies as a function of concentration and receptor subtype. J. Neurophysiol. 101, 2472–2484 (2009).
Amara, S. G. & Kuhar, M. J. Neurotransmitter transporters: recent progress. Annu. Rev. Neurosci. 16, 73–93 (1993).
Nee, D. E., Wager, T. D. & Jonides, J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn. Affect. Behav. Neurosci. 7, 1–17 (2007).
Scolari, M., Seidl-Rathkopf, K. N. & Kastner, S. Functions of the human frontoparietal attention network: evidence from neuroimaging. Curr. Opin. Behav. Sci. 1, 32–39 (2015).
Berridge, C. W. & Waterhouse, B. D. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42, 33–84 (2003).
Toussay, X., Basu, K., Lacoste, B. & Hamel, E. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J. Neurosci. 33, 3390–3401 (2013).
Napadow, V., Dhond, R., Kennedy, D., Hui, K. K. & Makris, N. Automated brainstem co-registration (ABC) for MRI. Neuroimage 32, 1113–1119 (2006).
Laird, A. R. et al. Behavioral interpretations of intrinsic connectivity networks. J. Cogn. Neurosci. 23, 4022–4037 (2011).
Zhang, S., Hu, S., Chao, H. H. & Li, C.-S. R. Resting-state functional connectivity of the locus coeruleus in humans: in comparison with the ventral tegmental area/substantia nigra pars compacta and the effects of age. Cereb. Cortex 26, 3413–3427 (2016).
Gannon, M. & Wang, Q. Complex noradrenergic dysfunction in Alzheimer’s disease: low norepinephrine input is not always to blame. Brain Res. https://doi.org/10.1016/j.brainres.2018.01.001 (2018).
Healey, M. K., Hasher, L. & Campbell, K. L. The role of suppression in resolving interference: evidence for an age-related deficit. Psychol. Aging 28, 721–728 (2013).
Gazzaley, A., Cooney, J. W., Rissman, J. & D’Esposito, M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat. Neurosci. 8, 1298–1300 (2005).
Mitchell, K. J., Johnson, M. R., Higgins, J. A. & Johnson, M. K. Age differences in brain activity during perceptual versus reflective attention. Neuroreport 21, 293–297 (2010).
Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).
Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).
Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 (2004).
Tohka, J. et al. Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39, 1227–1245 (2008).
Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl Acad. Sci. USA 105, 14325–14329 (2008).
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).
Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).
Epstein, R. The cortical basis of visual scene processing. Vis. Cogn. 12, 954–978 (2005).
Grill-Spector, K. & Malach, R. fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. 107, 293–321 (2001).
Erez, Y. & Yovel, G. Clutter modulates the representation of target objects in the human occipitotemporal cortex. J. Cogn. Neurosci. 26, 490–500 (2014).
Altmann, C. F., Deubelius, A. & Kourtzi, Z. Shape saliency modulates contextual processing in the human lateral occipital complex. J. Cogn. Neurosci. 16, 794–804 (2004).
Gazzaley, A. et al. Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cereb. Cortex 17, I125–I135 (2007).
Mumford, J. A., Turner, B. O., Ashby, F. G. & Poldrack, R. A. Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. Neuroimage 59, 2636–2643 (2012).
Okubo, Y. et al. Imaging extrasynaptic glutamate dynamics in the brain. Proc. Natl Acad. Sci. USA 107, 6526–6531 (2010).
Keren, N. I., Lozar, C. T., Harris, K. C., Morgan, P. S. & Eckert, M. A. In vivo mapping of the human locus coeruleus. Neuroimage 47, 1261–1267 (2009).
Acknowledgements
This work was supported by grants from the National Institute on Aging RO1AG025340 awarded to M.M., JSPS KAKENHI 16H03750 and 15K21062 awarded to T.U., and JSPS KAKENHI 16H05959, 16KT0002 and 16H02053 and European Commission CIG618600 awarded to M.S. We thank C. Cho for assistance with Figs. 1 and 7. The funders had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
T.-H.L. and M.M. designed the study. T.-H.L., S.G.-G. and A.P. acquired the data. Data were analysed by T.-H.L. with S.G.-G., D.C. and M.M. Modelling was conducted by T.U. and M.S. All the authors contributed to the preparation of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figures, Supplementary Tables, Supplementary References
Rights and permissions
About this article
Cite this article
Lee, TH., Greening, S.G., Ueno, T. et al. Arousal increases neural gain via the locus coeruleus–noradrenaline system in younger adults but not in older adults. Nat Hum Behav 2, 356–366 (2018). https://doi.org/10.1038/s41562-018-0344-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-018-0344-1
This article is cited by
-
Feasibility of a telephone-delivered educational intervention for knowledge transfer of COVID-19-related information to older adults in Hong Kong: a pre–post-pilot study
Pilot and Feasibility Studies (2022)
-
Mental imagery can generate and regulate acquired differential fear conditioned reactivity
Scientific Reports (2022)
-
Lower novelty-related locus coeruleus function is associated with Aβ-related cognitive decline in clinically healthy individuals
Nature Communications (2022)
-
Plasma nervonic acid levels were negatively associated with attention levels in community-living older adults in New Zealand
Metabolomics (2022)
-
Visual search under physical effort is faster but more vulnerable to distractor interference
Cognitive Research: Principles and Implications (2021)