Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Event segmentation protects emotional memories from competing experiences encoded close in time

Subjects

Abstract

Fear memories are characterized by their permanence and a fierce resistance to unlearning by new experiences. We considered whether this durability involves a process of memory segmentation that separates competing experiences. To address this question, we used an emotional-learning task designed to measure recognition memory for category exemplars encoded during competing experiences of fear conditioning and extinction. Here, we show that people recognized more fear-conditioned exemplars encoded during conditioning than conceptually related exemplars encoded immediately after a perceptual event boundary that separates conditioning from extinction. Selective episodic memory depended on a period of consolidation, an explicit break between competing experiences, and was unrelated to within-session arousal or the explicit realization of a transition from conditioning to extinction. Collectively, these findings suggest that event boundaries guide selective consolidation to prioritize emotional information in memory—at the expense of related but conflicting information experienced shortly thereafter. We put forward a model whereby event boundaries bifurcate related memory traces for incompatible experiences. This is in contrast to a mechanism that integrates related experiences for adaptive generalization1,2,3, and reveals a potentially distinct organization by which competing memories are adaptively segmented to select and protect nascent fear memories from immediate sources of interference.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emotional learning selectively prioritizes, and extinction diminishes, episodic memories for conceptually related items that are encoded close in time.
Fig. 2: Event boundaries segment memory despite occasional shocks during extinction.
Fig. 3: Selective episodic memory prioritization for threat withstands various optimized extinction protocols.
Fig. 4: A hypothesized mechanism by which perceptual event boundaries automatically segment long-term threat and extinction memories.

Similar content being viewed by others

References

  1. Cai, D. J. et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature 534, 115–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dunsmoor, J. E., Murty, V. P., Davachi, L. & Phelps, E. A. Emotional learning selectively and retroactively strengthens memories for related events. Nature 520, 345–348 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rashid, A. J. et al. Competition between engrams influences fear memory formation and recall. Science 353, 383–387 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Pavlov, I. P. Conditioned Reflexes (Oxford Univ. Press, Oxford, 1927).

  5. Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  PubMed  Google Scholar 

  6. Konorski, J. Integrative Activity of the Brain: An Interdisciplinary Approach (Univ. Chicago Press, Chicago, IL, 1967).

  7. Bouton, M. E. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol. Psychiatry 52, 976–986 (2002).

    Article  PubMed  Google Scholar 

  8. Senn, V. et al. Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81, 428–437 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Sotres-Bayon, F., Sierra-Mercado, D., Pardilla-Delgado, E. & Quirk, G. J. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs. Neuron 76, 804–812 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tovote, P., Fadok, J. P. & Lüthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Dunsmoor, J. E., Niv, Y., Daw, N. D. & Phelps, E. A. Rethinking extinction. Neuron 88, 47–63 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Müller, G. E. & Pilzecker, A. Experimentelle Beiträge zur Lehre vom Gedächtniss Vol. 1 (JA Barth, Leipzig, 1900).

  15. Kurby, C. A. & Zacks, J. M. Segmentation in the perception and memory of events. Trends Cogn. Sci. 12, 72–79 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Speer, N. K. & Zacks, J. M. Temporal changes as event boundaries: processing and memory consequences of narrative time shifts. J. Mem. Lang. 53, 125–140 (2005).

    Article  Google Scholar 

  17. Rinck, M. & Bower, G. H. Temporal and spatial distance in situation models. Mem. Cogn. 28, 1310–1320 (2000).

    Article  CAS  Google Scholar 

  18. Zacks, J. M. & Tversky, B. Event structure in perception and conception. Psychol. Bull. 127, 3–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Morrow, D. G., Greenspan, S. L. & Bower, G. H. Accessibility and situation models in narrative comprehension. J. Mem. Lang. 26, 165–187 (1987).

    Article  Google Scholar 

  20. Ezzyat, Y. & Davachi, L. What constitutes an episode in episodic memory? Psychol. Sci. 22, 243–252 (2011).

    Article  PubMed  Google Scholar 

  21. Davachi, L. & DuBrow, S. How the hippocampus preserves order: the role of prediction and context. Trends Cogn. Sci. 19, 92–99 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ezzyat, Y. & Davachi, L. Similarity breeds proximity: pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron 81, 1179–1189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DuBrow, S. & Davachi, L. The influence of context boundaries on memory for the sequential order of events. J. Exp. Psychol. Gen. 142, 1277–1286 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. DuBrow, S. & Davachi, L. Temporal binding within and across events. Neurobiol. Learn. Mem. 134, 107–114 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Clewett, D. & Davachi, L. The ebb and flow of experience determines the temporal structure of memory. Curr. Opin. Behav. Sci. 17, 186–193 (2017).

    Article  PubMed  Google Scholar 

  26. Dudai, Y., Karni, A. & Born, J. The consolidation and transformation of memory. Neuron 88, 20–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Gershman, S. J., Monfils, M.-H., Norman, K. A. & Niv, Y. The computational nature of memory modification. eLife 6, e23763 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Lee, H. J., Berger, S. Y., Stiedl, O., Spiess, J. & Kim, J. J. Post-training injections of catecholaminergic drugs do not modulate fear conditioning in rats and mice. Neurosci. Lett. 303, 123–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Wilensky, A. E., Schafe, G. E. & LeDoux, J. E. Functional inactivation of the amygdala before but not after auditory fear conditioning prevents memory formation. J. Neurosci. 19, RC48 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. McGowan, J. et al Prophylactic ketamine attenuates learned fear. Neuropsychopharmacology 42, 1577–1589 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Schiff, H. C. et al. β-Adrenergic receptors regulate the acquisition and consolidation phases of aversive memory formation through distinct, temporally regulated signaling pathways. Neuropsychopharmacology 42, 895–903 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Bush, D. E., Caparosa, E. M., Gekker, A. & LeDoux, J. β-Adrenergic receptors in the lateral nucleus of the amygdala contribute to the acquisition but not the consolidation of auditory fear conditioning. Front. Behav. Neurosci. 4, 154 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maren, S. & Chang, C. H. Recent fear is resistant to extinction. Proc. Natl Acad. Sci. USA 103, 18020–18025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huff, N. C., Hernandez, J. A., Blanding, N. Q. & LaBar, K. S. Delayed extinction attenuates conditioned fear renewal and spontaneous recovery in humans. Behav. Neurosci. 123, 834–843 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. McGaugh, J. L. Consolidating memories. Annu. Rev. Psychol. 66, 1–24 (2015).

    Article  PubMed  Google Scholar 

  36. Dudai, Y. The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004).

    Article  PubMed  Google Scholar 

  37. Robertson, E. M., Pascual-Leone, A. & Miall, R. C. Current concepts in procedural consolidation. Nat. Rev. Neurosci. 5, 576–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Swallow, K. M., Zacks, J. M. & Abrams, R. A. Event boundaries in perception affect memory encoding and updating. J. Exp. Psychol. Gen. 138, 236–257 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zacks, J. M. & Swallow, K. M. Event segmentation. Curr. Dir. Psychol. Sci. 16, 80–84 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ben-Yakov, A., Eshel, N. & Dudai, Y. Hippocampal immediate poststimulus activity in the encoding of consecutive naturalistic episodes. J. Exp. Psychol. Gen. 142, 1255–1263 (2013).

    Article  PubMed  Google Scholar 

  41. Patil, A., Murty, V. P., Dunsmoor, J. E., Phelps, E. A. & Davachi, L. Reward retroactively enhances memory consolidation for related items. Learn. Mem. 24, 65–69 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dunsmoor, J. E., Martin, A. & LaBar, K. S. Role of conceptual knowledge in learning and retention of conditioned fear. Biol. Psychol. 89, 300–305 (2012).

    Article  PubMed  Google Scholar 

  43. Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Gallistel, C. R., Fairhurst, S. & Balsam, P. The learning curve: implications of a quantitative analysis. Proc. Natl Acad. Sci. USA 101, 13124–13131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rescorla, R. A. & Wagner, A. R. A Theory of Pavlovian Conditioning: Variations in the Effectiveness of Reinforcement and Nonreinforcement (Appleton-Century-Crofts, New York, NY, 1972).

  46. Gershman, S. J., Jones, C. E., Norman, K. A., Monfils, M.-H. & Niv, Y. Gradual extinction prevents the return of fear: implications for the discovery of state. Front. Behav. Neurosci. 7, 164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Denniston, J. C., Chang, R. C. & Miller, R. R. Massive extinction treatment attenuates the renewal effect. Learn. Motiv. 34, 68–86 (2003).

    Article  Google Scholar 

  48. Dunsmoor, J. E., Campese, V. D., Ceceli, A. O., LeDoux, J. E. & Phelps, E. A. Novelty-facilitated extinction: providing a novel outcome in place of an expected threat diminishes recovery of defensive responses. Biol. Psychiatry 78, 203–209 (2015).

    Article  PubMed  Google Scholar 

  49. Gunther, L. M., Denniston, J. C. & Miller, R. R. Conducting exposure treatment in multiple contexts can prevent relapse. Behav. Res. Ther. 36, 75–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Shohamy, D. & Adcock, R. A. Dopamine and adaptive memory. Trends Cogn. Sci. 14, 464–472 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Adolphs, R. The biology of fear. Curr. Biol. 23, R79–R93 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Talmi, D. Enhanced emotional memory: cognitive and neural mechanisms. Curr. Dir. Psychol. Sci. 22, 430–436 (2013).

    Article  Google Scholar 

  53. Plendl, W. & Wotjak, C. T. Dissociation of within-and between-session extinction of conditioned fear. J. Neurosci. 30, 4990–4998 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Gershman, S. J. & Hartley, C. A. Individual differences in learning predict the return of fear. Learn. Behav. 43, 243–250 (2015).

    Article  PubMed  Google Scholar 

  55. Craske, M. G. et al. Optimizing inhibitory learning during exposure therapy. Behav. Res. Ther. 46, 5–27 (2008).

    Article  PubMed  Google Scholar 

  56. Myers, K. M., Ressler, K. J. & Davis, M. Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learn. Mem. 13, 216–223 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Golkar, A. & Öhman, A. Fear extinction in humans: effects of acquisition–extinction delay and masked stimulus presentations. Biol. Psychol. 91, 292–301 (2012).

    Article  PubMed  Google Scholar 

  58. Shiban, Y., Wittmann, J., Weißinger, M. & Mühlberger, A. Gradual extinction reduces reinstatement. Front. Behav. Neurosci. 9, 254 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bouton, M. E. Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol. Bull. 114, 80–99 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Ballarini, F., Moncada, D., Martinez, M. C., Alen, N. & Viola, H. Behavioral tagging is a general mechanism of long-term memory formation. Proc. Natl Acad. Sci. USA 106, 14599–14604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, S. H., Redondo, R. L. & Morris, R. G. Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc. Natl Acad. Sci. USA 107, 19537–19542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Taylor, W. A. Change-Point Analysis: A Powerful New Tool for Detecting Changes (Taylor Enterprises, 2000); http://variation.com/cpa/tech/changepoint.html

  63. Green, S. R., Kragel, P. A., Fecteau, M. E. & LaBar, K. S. Development and validation of an unsupervised scoring system (Autonomate) for skin conductance response analysis. Int. J. Psychophysiol. 91, 186–193 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Monfils, J. Lewis-Peacock and the LeDoux lab for helpful comments and discussions. The study was supported by NIH R01 MH097085 (to E.A.P.). J.E.D. is supported by NIH K99R00 MH106719. M.C.W.K is supported by an H2020 Marie Sklodowska-Curie fellowship and a Society in Science—Branco Weiss fellowship. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.E.D., M.C.W.K., L.D. and E.A.P. conceived and designed the study. J.E.D., C.M.M. and M.D.E. performed the research. J.E.D. and M.C.W.K. analysed the data. All authors helped to interpret the data. J.E.D., M.C.W.K., L.D. and E.A.P. wrote the manuscript. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Joseph E. Dunsmoor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Results, Supplementary Tables 1–11

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunsmoor, J.E., Kroes, M.C.W., Moscatelli, C.M. et al. Event segmentation protects emotional memories from competing experiences encoded close in time. Nat Hum Behav 2, 291–299 (2018). https://doi.org/10.1038/s41562-018-0317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0317-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing