Fluid intelligence is supported by the multiple-demand system not the language system

Abstract

A set of frontoparietal brain regions—the multiple-demand (MD) system1,2—has been linked to fluid intelligence in brain imaging3,4 and in studies of patients with brain damage5,6,7. For example, the amount of damage to frontal or parietal, but not temporal, cortices predicts fluid intelligence deficit5. However, frontal and parietal lobes are structurally8 and functionally9,10 heterogeneous. They contain domain-general regions that respond across diverse tasks11,12, but also specialized regions that respond selectively during language processing13. Since language may be critical for complex thought14,15,16,17,18,19,20,21,22,23,24 (compare with refs 25,26), intelligence loss following damage to the frontoparietal cortex could have important contributions from damage to language-selective regions. To evaluate the relative contributions of MD versus language-selective regions, we employed large functional magnetic resonance imaging datasets to construct probabilistic maps of the two systems. We used these maps to weigh the volume of lesion (in each of 80 patients) falling within each system. MD-weighted, but not language-weighted, lesion volumes predicted fluid intelligence deficit (with the opposite pattern observed for verbal fluency), indicating that fluid intelligence is specifically tied to the MD system, and undermining claims that language is at the core of complex thought.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Anatomical distribution of lesions.
Fig. 2: Correlation of lesion volumes with postmorbid change in fluid intelligence.
Fig. 3: Correlation of lesion volumes with verbal fluency scores.

References

  1. 1.

    Duncan, J. The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn. Sci. 14, 172–179 (2010).

    Article  PubMed  Google Scholar 

  2. 2.

    Duncan, J. The structure of cognition: attentional episodes in mind and brain. Neuron 80, 35–50 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gray, J. R., Chabris, C. F. & Braver, T. S. Neural mechanisms of general fluid intelligence. Nat. Neurosci. 6, 316–322 (2003).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Woolgar, A. et al. Fluid intelligence loss linked to restricted regions of damage within frontal and parietal cortex. Proc. Natl Acad. Sci. USA 107, 14899–14902 (2010).

  6. 6.

    Duncan, J., Burgess, P. & Emslie, H. Fluid intelligence after frontal lobe lesions. Neuropsychologia 33, 261–268 (1995).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Glascher, J. et al. Distributed neural system for general intelligence revealed by lesion mapping. Proc. Natl Acad. Sci. USA 107, 4705–4709 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Amunts, K. et al. Brocaas region: novel organizational principles and multiple receptor mapping. PLoS Biol. 8, e1000489 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Fedorenko, E., Duncan, J. & Kanwisher, N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol. 22, 2059–2062 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Wise, R. J. et al. Separate neural subsystems within ‘Wernicke’s area’. Brain 124, 83–95 (2001).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Fedorenko, E., Duncan, J. & Kanwisher, N. Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl Acad. Sci. USA 110, 16616–16621 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Fedorenko, E., Behr, M. K. & Kanwisher, N. Functional specificity for high-level linguistic processing in the human brain. Proc. Natl Acad. Sci. USA 108, 16428–16433 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Carruthers, P. The cognitive functions of language. Behav. Brain Sci. 25, 657–674 (2002).

    PubMed  Google Scholar 

  15. 15.

    Hinzen, W. The philosophical significance of Universal Grammar. Lang. Sci. 34, 635–649 (2012).

    Article  Google Scholar 

  16. 16.

    Hinzen, W. Narrow syntax and the language of thought. Philos. Psychol. 26, 1–23 (2013).

    Article  Google Scholar 

  17. 17.

    Dennett, D. C. in Language and Thought (ed. Burri, A.) Ch. 3 (de Gruyter, Berlin, 1997).

  18. 18.

    Bickerton, D. Language and Human Behavior (Univ. Washington Press, Seattle, WA, 1995).

  19. 19.

    Gentner, D. in Language in Mind: Advances in the Study of Language and Thought (eds Gentner, D. & Goldin-Meadow, S.) Ch. 8 (MIT Press, Cambridge, MA, 2003).

  20. 20.

    Kuczaj, S. A. & Hendry, J. L. in Language in Mind: Advances in the Study of Language and Thought (eds Gentner, D. & Goldin-Meadow, S.) Ch. 9 (MIT Press, Cambridge, MA, 2003).

  21. 21.

    Bermúdez, J. L. Thinking without Words (Oxford Univ. Press, Oxford, 2003).

  22. 22.

    Baldo, J. V., Bunge, S. A., Wilson, S. M. & Dronkers, N. F. Is relational reasoning dependent on language? A voxel-based lesion symptom mapping study. Brain Lang. 113, 59–64 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Baldo, J. V., Dronkers, N. F., Wilkins, D., Ludy, C., Raskin, P. & Kim, J. Is problem solving dependent on language? Brain Lang. 92, 240–250 (2005).

    Article  PubMed  Google Scholar 

  24. 24.

    Baldo, J. V., Paulraj, S. R., Curran, B. C. & Dronkers, N. F. Impaired reasoning and problem-solving in individuals with language impairment due to aphasia or language delay. Front. Psychol. 6, 1523 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Fedorenko, E. & Varley, R. Language and thought are not the same thing: evidence from neuroimaging and neurological patients. Ann. NY Acad. Sci. 1369, 132–153 (2016).

  26. 26.

    Varley, R. Reason without much language. Lang. Sci. 46, 232–244 (2014).

    Article  Google Scholar 

  27. 27.

    Tomasello, M. & Herrmann, E. Ape and human cognition: what’s the difference? Curr. Dir. Psychol. Sci. 19, 3–8 (2010).

    Article  Google Scholar 

  28. 28.

    Sherwood, C. C., Subiaul, F. & Zawidzki, T. W. A natural history of the human mind: tracing evolutionary changes in brain and cognition. J. Anat. 212, 426–454 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Premack, D. Human and animal cognition: continuity and discontinuity. Proc. Natl Acad. Sci. USA 104, 13861–13867 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Penn, D. C., Holyoak, K. J. & Povinelli, D. J. Darwin’s mistake: explaining the discontinuity between human and nonhuman minds. Behav. Brain Sci. 31, 109–130 (2008).

    PubMed  Google Scholar 

  31. 31.

    Broca, P. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech). Bull. De. la Société Anat. 6, 330–357 (1861).

    Google Scholar 

  32. 32.

    Monti, M. M., Parsons, L. M. & Osherson, D. N. Thought beyond language: neural dissociation of algebra and natural language. Psychol. Sci. 23, 914–922 (2012).

    Article  PubMed  Google Scholar 

  33. 33.

    Woolgar, A., Jackson, J. & Duncan, J. Coding of visual, auditory, rule, and response information in the brain: 10 years of multivoxel pattern analysis. J. Cogn. Neurosci. 28, 1433–1454 (2016).

    Article  PubMed  Google Scholar 

  34. 34.

    Yeo, B.T. et al. Functional specialization and flexibility in human association cortex. Cereb. Cortex 25, 3654–3672 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Niendam, T. A. et al. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn. Affect Behav. Neurosci 12, 241–268 (2012).

  36. 36.

    Dosenbach, N. U. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

  37. 37.

    Naghavi, H. R. & Nyberg, L. Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? Conscious. Cogn. 14, 390–425 (2005).

    Article  PubMed  Google Scholar 

  38. 38.

    Owen, A. M., McMillan, K. M., Laird, A. R. & Bullmore, E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25, 46–59 (2005).

    Article  PubMed  Google Scholar 

  39. 39.

    Cole, M. W. & Schneider, W. The cognitive control network: integrated cortical regions with dissociable functions. NeuroImage 37, 343–360 (2007).

    Article  PubMed  Google Scholar 

  40. 40.

    Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Power, J. D. & Petersen, S. E. Control-related systems in the human brain. Curr. Opin. Neurobiol. 23, 223–228 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Gray, J. R. & Thompson, P. M. Neurobiology of intelligence: science and ethics. Nat. Rev. 5, 471–482 (2004).

    CAS  Article  Google Scholar 

  45. 45.

    Fedorenko, E., Hsieh, P. J., Nieto-Castanon, A., Whitfield-Gabrieli, S. & Kanwisher, N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Blank, I., Kanwisher, N. & Fedorenko, E. A functional dissociation between language and multiple-demand systems revealed in patterns of BOLD signal fluctuations. J. Neurophysiol. 112, 1105–1118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Mahowald, K. & Fedorenko, E. Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability. NeuroImage 139, 74–93 (2016).

    Article  PubMed  Google Scholar 

  48. 48.

    Measuring Intelligence with the Culture Fair Tests (Institute for Personality and Ability Testing, Champaign, IL, 1973).

  49. 49.

    Ekstrom, R. B., French, J. W., Harmon, H. H. & Derman, D. ETS Kit of Factor-Referenced Cognitive Tests (Educational Testing Service, Princeton, NJ, 1976).

    Google Scholar 

  50. 50.

    Nelson, H. E. & Willison, J. R. The Revised National Adult Reading Test–Test Manual. (NFER-Nelson: Windsor, 1991).

    Google Scholar 

  51. 51.

    Burin, D. I., Jorge, R. E., Arizaga, R. A. & Paulsen, J. S. Estimation of premorbid intelligence: the word accentuation test—Buenos Aires version. J. Clin. Exp. Neuropsychol. 22, 677–685 (2000).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Benton, A. L. & Hamsher, K. Multilingual Aphasia Examination. (Univ. Iowa Press: Iowa City, IA, 1976).

    Google Scholar 

  53. 53.

    Roca, M. et al. Executive function and fluid intelligence after frontal lobe lesions. Brain 133, 234–247 (2010).

  54. 54.

    Hartshorne, J. K. & Germine, L. T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol. Sci. 26, 433–443 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Vernon, M. Relationship of language to the thinking process. Arch. Gen. Psychiatry 16, 325–333 (1967).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Monti, M. M., Parsons, L. M. & Osherson, D. N. The boundaries of language and thought in deductive inference. Proc. Natl Acad. Sci. USA 106, 12554–12559 (2009).

  57. 57.

    de Villiers, J. in Understanding Other Minds: Perspectives from Developmental Cognitive Neuroscience 2nd edn (eds Baron-Cohen, S. et al.) 83–123 (2000).

  58. 58.

    Piaget, J. The Language and Thought of the Child (Harcourt Brace, Oxford, 1926).

    Google Scholar 

  59. 59.

    Vygotskiĭ, L. S. Thought and Language (MIT Press, Cambridge, MA, 2012).

  60. 60.

    Gentner, D. & Loewenstein, J. in Language, Literacy, and Cognitive Development: the Development and Consequences of Symbolic Communication (eds Amsel, E. & Byrnes, J. P.) Ch. 4 (Lawrence Erlbaum Associates, London, 2002).

  61. 61.

    Winsler, A. & Naglieri, J. Overt and covert verbal problem-solving strategies: developmental trends in use, awareness, and relations with task performance in children aged 5 to 17. Child. Dev. 74, 659–678 (2003).

    Article  PubMed  Google Scholar 

  62. 62.

    Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D. G. & Newman, T. B. Designing Clinical Research (Lippincott Williams and Wilkins, Philadelphia, PA, 2013).

  63. 63.

    Fedorenko, E. The role of domain-general cognitive control in language comprehension. Front. Psychol. 5, 335 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.W. was supported by Australian Research Council Fellowships (Discovery Early Career Researcher Award grant no. DE120100898 and Future Fellowship grant no. FT170100105) and an Australian Research Council Discovery Project research grant (DP12102835). J.D. was supported by the Medical Research Council (United Kingdom) intramural programme (grant no. SUAG/002/RG91365). E.F. was supported by an R00 award HD 057522 from National Institute of Child Health and Human Development, and by grants ANR-11-LABX-0036 (Brain and Language Research Institute) and ANR-11-IDEX-0001-02 (A*MIDEX: Initiative d'excellence Aix-Marseille). We thank N. Dermody for help with analysis. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

E.F did the conceptualization, E.F. and A.W. did the methodology, A.W. did the formal analysis, E.F. and A.W. wrote the original draft of the paper, J.D., E.F. and A.W reviewed and edited the paper, A.W. did the visualization and E.F. and J.D. supervised. F.M. traced the patient lesions.

Corresponding authors

Correspondence to Alexandra Woolgar or Evelina Fedorenko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Woolgar, A., Duncan, J., Manes, F. et al. Fluid intelligence is supported by the multiple-demand system not the language system. Nat Hum Behav 2, 200–204 (2018). https://doi.org/10.1038/s41562-017-0282-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing