Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Persistent neuronal activity in human prefrontal cortex links perception and action


How do humans flexibly respond to changing environmental demands on a subsecond temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behaviour, yet the core mechanisms that translate sensory information into behaviour remain undefined. Using direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity (indexed by the broadband gamma signal) in 16 participants while they performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centred in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behaviour.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical and functional influences on the chronology of information processing across cortex.
Fig. 2: Cortical distribution and temporal dynamics of HG activity across ROIs.
Fig. 3: Cortical distribution and temporal dynamics of HG activity.
Fig. 4: Persistent HG activity is critical for response selection.
Fig. 5: Stimulus features and task demands affect spatial and temporal profiles of persistent stimulus-to-response HG activity.
Fig. 6: Interaction between persistent and response HG activity predicts reaction times.


  1. Duncan, J., Burgess, P. & Emslie, H. Fluid intelligence after frontal lobe lesions. Neuropsychologia 33, 261–268 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Fuster, J. M., Bodner, M. & Kroger, J. K. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Stuss, D. T. & Knight, R. T. Principles of Frontal Lobe Function (Oxford Univ. Press, New York, NY, 2012).

  4. Szczepanski, S. M. & Knight, R. T. Insights into human behavior from lesions to the prefrontal cortex. Neuron 83, 1002–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Callicott, J. H. et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb. Cortex 10, 1078–1092 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Just, M. A., Cherkassky, V. L., Keller, T. A. & Minshew, N. J. Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127, 1811–1821 (2004).

    Article  PubMed  Google Scholar 

  7. Mayberg, H. in Frontal-Subcortical Circuits in Psychiatric and Neurological Disorders (eds Cummings, J. L. & Lichter, D. G.) 177–206 (Guilford, New York, NY, 2001).

  8. Curtis, C. E. & Lee, D. Beyond working memory: the role of persistent activity in decision making. Trends Cogn. Sci. 14, 216–222 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. D’Esposito, M. & Postle, B. R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66, 115–142 (2015).

    Article  PubMed  Google Scholar 

  10. Fedorenko, E., Duncan, J. & Kanwisher, N. Broad domain generality in focal regions of frontal and parietal cortex. Proc. Natl Acad. Sci. USA 110, 16616–16621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goard, M. J., Pho, G. N., Woodson, J. & Sur, M. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. eLife 5, e13764 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hernandez, A., Zainos, A. & Romo, R. Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33, 959–972 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J. N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    Article  PubMed  Google Scholar 

  14. Rainer, G., Rao, S. C. & Miller, E. K. Prospective coding for objects in primate prefrontal cortex. J. Neurosci. 19, 5493–5505 (1999).

    CAS  PubMed  Google Scholar 

  15. Riley, M. R. & Constantinidis, C. Role of prefrontal persistent activity in working memory. Front. Syst. Neurosci. 9, 181 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible sensorimotor decisions. Science 348, 1352–1355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stokes, M. G. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 19, 394–405 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chafee, M. V. & Goldman-Rakic, P. S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79, 2919–2940 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, Y., Matysiak, A., Heil, P., Konig, R. & Brosch, M. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates. eLife 5, e15441 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. Romo, R. & De Lafuente, V. Conversion of sensory signals into perceptual decisions. Prog. Neurobiol. 103, 41–75 (2013).

    Article  PubMed  Google Scholar 

  21. Curtis, C. E., Rao, V. Y. & D’Esposito, M. Maintenance of spatial and motor codes during oculomotor delayed response tasks. J. Neurosci. 24, 3944–3952 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Curtis, C. E. & Connolly, J. D. Saccade preparation signals in the human frontal and parietal cortices. J. Neurophysiol. 99, 133–145 (2008).

    Article  PubMed  Google Scholar 

  23. Bastin, J. et al. Direct recordings in human cortex reveal the dynamics of gamma-band (50–150 Hz) activity during pursuit eye movement control. Neuroimage 63, 339–347 (2012).

    Article  PubMed  Google Scholar 

  24. Edwards, E. et al. Spatiotemporal imaging of cortical activation during verb generation and picture naming. Neuroimage 50, 291–301 (2010).

    Article  PubMed  Google Scholar 

  25. Ossandon, T. et al. Efficient ‘Pop-Out’ visual search elicits sustained broadband gamma activity in the dorsal attention network. J. Neurosci. 32, 3414–3421 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–20 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukamel, R. et al. Coupling between neuronal firing, field potentials, and fMRI in human auditory cortex. Science 309, 951–954 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28, 11526–11536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ray, S. & Maunsell, J. H. R. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 2871–2875 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fedorenko, E., Duncan, J. & Kanwisher, N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol. 22, 2059–2062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sahin, N. T., Pinker, S., Cash, S. S., Schomer, D. & Halgren, E. Sequential processing of lexical, grammatical, and phonological information within Broca’s area. Science 326, 445–449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Braun, U. et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl Acad. Sci. USA 112, 11678–11683 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Catani, M. et al. Short frontal lobe connections of the human brain. Cortex 48, 273–291 (2012).

    Article  PubMed  Google Scholar 

  36. Sreenivasan, K. K., Curtis, C. E. & D’Esposito, M. Revisiting the role of persistent neural activity during working memory. Trends Cogn. Sci. 18, 82–89 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Mukamel, R. & Fried, I. Human intracranial recordings and cognitive neuroscience. Annu. Rev. Psychol. 63, 511–537 (2012).

    Article  PubMed  Google Scholar 

  42. Lundqvist, M. et al. Gamma and beta bursts underlie working memory. Neuron 90, 152–164 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tottenham, N. et al. The NimStim set of facial expressions: judgments from untrained research participants. Psychiat. Res. 168, 242–249 (2009).

    Article  Google Scholar 

  44. Kominek, J. & Black, A. W. The CMU Arctic speech databases. In: Fifth ISCA Speech Synthesis Workshop (eds Black, A. W. & Lenzo, K.) 223–224 (2004).

  45. Kawahara, H. & Irino, T. in Speech Separation by Humans and Machines (ed. Divenyi, P.) 167–180 (Springer, Boston, MA, 2005).

  46. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Bradley, M. M. & Lang, P. J. Affective Norms for English words (ANEW): Instruction Manual and Affective Ratings Technical Report C-1 (Center for Research in Psychophysiology, Univ. Florida, 1999).

  48. Crone, N. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121, 2301–2315 (1998).

    Article  PubMed  Google Scholar 

  49. Lachaux, J.-P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N. E. High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miller, K. J. et al. Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations. Neuroimage 85, 711–720 (2014).

    Article  PubMed  Google Scholar 

  51. Bruns, A. Fourier-, Hilbert- and wavelet-based signal analysis: Are they really different approaches? J. Neurosci. Methods 137, 321–332 (2004).

    Article  PubMed  Google Scholar 

  52. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 57, 298–300 (1995).

  53. Ruscio, J. & Roche, B. Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure. Psychol. Assess. 24, 282–292 (2012).

    Article  PubMed  Google Scholar 

Download references


We thank the patients for their cooperation, patience, and interest—without their help this research would not be possible. We also thank J. N. Hoffman, A. Flinker, R. Ivry, K. Johnson and J. D. Wallis for providing valuable comments and suggestions during manuscript preparation, and K. L. Anderson, M. Cano and V. N. Rangarajan for help in data collection.

This work was supported by the following grants: National Science Foundation (NSF) Graduate Research Fellowship DGE1106400 (M.H.), the National Institute of Mental Health F32MH75317 (A.S.), the National Institute of Neurological Disorders and Stroke (NINDS) R37NS21135 and the Nielsen Corporation (R.T.K.), NINDS R01NS078396 and NSF BCS1358907 (J.P.), NS40596 and NS088606 (N.E.C.), NIH R01DC012379 (E.F.C.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The MacBrain Face Stimulus Set was developed by Nim Tottenham ( with support from the John D. and Catherine T. MacArthur Foundation Research Network on Early Experience and Brain Development. The dog–cat morph stimuli were provided by E. Miller from the Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences at the Massachusetts Institute of Technology.

Author information

Authors and Affiliations



M.H., A.S. and R.T.K. conceived the study. M.H. and A.S. designed the experiments and collected the data. J.P., E.F.C., N.E.C., D.K.S., K.D.L. and P.B.W. recruited and examined the participants and facilitated data recording. M.H., J.C. and A.Y.S. analysed and interpreted the data. M.H., A.Y.S. and R.T.K. wrote the manuscript. A.Y.S. provided direct supervision during study design, data collection, data analysis and interpretation, and manuscript preparation stages.

Corresponding author

Correspondence to Avgusta Y. Shestyuk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Methods, Supplementary Tables 1–6, Supplementary Figures 1–14.

Life Science Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haller, M., Case, J., Crone, N.E. et al. Persistent neuronal activity in human prefrontal cortex links perception and action. Nat Hum Behav 2, 80–91 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing