Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diversity in pitch perception revealed by task dependence

Abstract

Pitch conveys critical information in speech, music and other natural sounds, and is conventionally defined as the perceptual correlate of a sound’s fundamental frequency (F0). Although pitch is widely assumed to be subserved by a single F0 estimation process, real-world pitch tasks vary enormously, raising the possibility of underlying mechanistic diversity. To probe pitch mechanisms, we conducted a battery of pitch-related music and speech tasks using conventional harmonic sounds and inharmonic sounds whose frequencies lack a common F0. Some pitch-related abilities—those relying on musical interval or voice recognition—were strongly impaired by inharmonicity, suggesting a reliance on F0. However, other tasks, including those dependent on pitch contours in speech and music, were unaffected by inharmonicity, suggesting a mechanism that tracks the frequency spectrum rather than the F0. The results suggest that pitch perception is mediated by several different mechanisms, only some of which conform to traditional notions of pitch.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Example harmonic and inharmonic tones.
Fig. 2: Task, example stimuli and results for experiments 1 and 2: pitch discrimination with pairs of synthetic tones and pairs of instrument notes.
Fig. 3: Task and results for experiment 3: melodic contour discrimination.
Fig. 4: Tasks and results for experiments 4 and 5: speech contour perception and Mandarin tone perception.
Fig. 5: Task, results and schematic of incorrect interval trials from experiment 6: familiar melody recognition.
Fig. 6: Task and results for experiments 7 and 8: sour note detection and interval pattern discrimination.
Fig. 7: Task and results for experiment 9: pitch discrimination with large pitch intervals.
Fig. 8: Task and results for experiments 10a, 10b and 11: famous speaker recognition and novel voice discrimination.

References

  1. Helmholtz, H. L. F. On the Sensations of Tone (Longmans, Green, & Co., London, 1875).

    Google Scholar 

  2. Rayleigh, W. S. Theory of Sound (Macmillan, London, 1896).

    Google Scholar 

  3. von Békésy, G. Experiments in Hearing (McGraw-Hill, New York, NY, 1960).

    Google Scholar 

  4. Plack, C., Oxenham, A., Fay, R. & Popper, A. Pitch: Neural Coding and Perception Vol. 24 (Springer, New York, NY, 2005).

    Book  Google Scholar 

  5. DeCheveigné, A. in Pitch: Neural Coding and Perception (eds Plack, C. J., Oxenham, A. J., Fay, R. & Popper, A.) 169–233 (Springer, New York, NY, 2005).

  6. Licklider, J. C. R. ‘Periodicity’ pitch and ‘place’ pitch. J. Acoust. Soc. Am. 26, 945 (1954).

    Article  Google Scholar 

  7. Schouten, J. F., Ritsma, R. J. & Cardozo, B. L. Pitch of the residue. J. Acoust. Soc. Am. 34, 1418–1424 (1962).

    Article  Google Scholar 

  8. Meddis, R. & Hewitt, M. J. Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I: Pitch identification. J. Acoust. Soc. Am. 89, 2866–2882 (1991).

    Article  Google Scholar 

  9. Cariani, P. & Delgutte, B. Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J. Neurophysiol. 76, 1698–1716 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Shamma, S. & Klein, D. The case of the missing pitch templates: how harmonic templates emerge in the early auditory system. J. Acoust. Soc. Am. 107, 2631–2644 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein, J. L. An optimum processor theory for the central formation of the pitch of complex tones. J. Acoust. Soc. Am. 54, 1496–1516 (1973).

    Article  CAS  PubMed  Google Scholar 

  12. Terhardt, E. Calculating virtual pitch. Hear. Res. 1, 155–182 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Kaernbach, C. & Demany, L. Psychophysical evidence against the autocorrelation theory of auditory temporal processing. J. Acoust. Soc. Am. 104, 2298–2306 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Bernstein, J. G. W. & Oxenham, A. J. The relationship between frequency selectivity and pitch discrimination: sensorineural hearing loss. J. Acoust. Soc. Am. 120, 3929–3945 (2006).

    Article  PubMed  Google Scholar 

  15. Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature 436, 1161–1165 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Feng, L. & Wang, X. Harmonic template neurons in primate auditory cortex underlying complex sound processing. Proc. Natl Acad. Sci. USA 114, E840–848 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fishman, Y. I., Micheyl, C. & Steinschneider, M. Neural representation of harmonic complex tones in primary auditory cortex of the awake monkey. J. Neurosci. 33, 10312–10323 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bizley, J. K., Walker, K. M. M., King, A. J. & Schnupp, J. W. H. Neural ensemble codes for stimulus periodicity in auditory cortex. J. Neurosci. 30, 5078–5091 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Patterson, R. D., Uppenkamp, S., Johnsrude, I. S. & Griffiths, T. D. The processing of temporal pitch and melody information in auditory cortex. Neuron 36, 767–776 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Penagos, H., Melcher, J. R. & Oxenham, A. J. A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J. Neurosci. 24, 6810–6815 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Norman-Haignere, S., Kanwisher, N. & McDermott, J. H. Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex. J. Neurosci. 33, 19451–19469 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Allen, E. J., Burton, P. C., Olman, C. A. & Oxenham, A. J. Representations of pitch and timbre variation in human auditory cortex. J. Neurosci. 37, 1284–1293 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tang, C., Hamilton, L. S. & Chang, E. F. Intonational speech prosody encoding in the human auditory cortex. Science 801, 797–801 (2017).

    Article  Google Scholar 

  24. Faulkner, A. Pitch discrimination of harmonic complex signals: residue pitch or multiple component discriminations? J. Acoust. Soc. Am. 78, 1993–2004 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Moore, B. C. J. & Glasberg, B. R. Frequency discrimination of complex tones with overlapping and non-overlapping harmonics. J. Acoust. Soc. Am. 87, 2163–2177 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. Micheyl, C., Divis, K., Wrobleski, D. M. & Oxenham, A. J. Does fundamental-frequency discrimination measure virtual pitch discrimination? J. Acoust. Soc. Am. 128, 1930–1942 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  27. Micheyl, C., Ryan, C. M. & Oxenham, A. J. Further evidence that fundamental-frequency difference limens measure pitch discrimination. J. Acoust. Soc. Am. 131, 3989–4001 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  28. Latinus, M. & Belin, P. Human voice perception. Curr. Biol. 21, R143–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. McDermott, J. H. & Oxenham, A. J. Music perception, pitch, and the auditory system. Curr. Opin. Neurobiol. 18, 452–463 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Roberts, B. & Holmes, S. D. Grouping and the pitch of a mistuned fundamental component: effects of applying simultaneous multiple mistunings to the other harmonics. Hear. Res. 222, 79–88 (2006).

    Article  PubMed  Google Scholar 

  31. Houtsma, A. J. M. & Smurzynski, J. Pitch identification and discrimination for complex tones with many harmonics. J. Acoust. Soc. Am. 87, 304 (1990).

    Article  Google Scholar 

  32. Shackleton, T. M. & Carlyon, R. P. The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination. J. Acoust. Soc. 95, 3529–3540 (1994).

    Article  CAS  Google Scholar 

  33. Micheyl, C., Delhommeau, K., Perrot, X. & Oxenham, A. J. Influence of musical and psychoacoustical training on pitch discrimination. Hear. Res. 219, 36–47 (2006).

    Article  PubMed  Google Scholar 

  34. Pressnitzer, D. & Patterson, R. D. in Physiological and Psychophysical Bases of Auditory Function (eds Breebart. D. J., Houtsma, A. J. M., Kohlrausch, A., Prijs, V. F. & Schoonoven, R.) 97–104 (Shaker Publishing, Maastricht, 2001).

  35. Norman-Haignere, S. & McDermott, J. H. Distortion products in auditory fMRI research: measurements and solutions. NeuroImage 129, 401–413 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  36. Dowling, W. J. & Fujitani, D. S. Contour, interval, and pitch recognition in memory for melodies. J. Acoust. Soc. Am. 49, 524–531 (1971).

    Article  Google Scholar 

  37. Kawahara, H. STRAIGHT, exploitation of the other aspect of VOCODER: perceptually isomorphic decomposition of speech sounds. Acoust. Sci. Technol. 27, 349–353 (2006).

    Article  Google Scholar 

  38. Kawahara, H. et al. TANDEM-STRAIGHT: a temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. Sadhana 36, 713–722 (2011).

    Article  Google Scholar 

  39. McDermott, J. H., Ellis, D. P. & Kawahara, H. Inharmonic speech: a tool for the study of speech perception and separation. SAPA@ Interspeech 114–117 (2012).

  40. Sloboda, J. A. The Musical Mind: The Cognitive Psychology of Music (Oxford Univ. Press, Oxford, 1985).

    Google Scholar 

  41. Peretz, I., Champod, A. S. & Hyde, K. Varieties of musical disorders: the Montreal battery of evaluation of amusia. Ann. NY Acad. Sci. 999, 58–75 (2003).

    Article  PubMed  Google Scholar 

  42. Temperley, D. A probabilistic model of melody perception. Cogn. Sci. 32, 418–444 (2008).

    Article  PubMed  Google Scholar 

  43. McDermott, J. H., Keebler, M. V., Micheyl, C. & Oxenham, A. J. Musical intervals and relative pitch: frequency resolution, not interval resolution, is special. J. Acoust. Soc. Am. 128, 1943–1951 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Garofolo, J. S. et al. TIMIT Acoustic–Phonetic Continuous Speech Corpus LDC93S1 (Linguistic Data Consortium, PA, 1993).

  45. Marques, C., Moreno, S., Castro, S. L. & Besson, M. Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence. J. Cogn. Neurosci. 19, 1453–1463 (2007).

    Article  PubMed  Google Scholar 

  46. Tervaniemi, M., Just, V., Koelsch, S., Widmann, A. & Schröger, E. Pitch discrimination accuracy in musicians vs nonmusicians: an event-related potential and behavioral study. Exp. Brain Res. 161, 1–10 (2005).

    Article  PubMed  Google Scholar 

  47. Schneider, P. et al. Structural and functional asymmetry of lateral Heschl’s gyrus reflects pitch perception preference. Nat. Neurosci. 8, 1241–1247 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. McDermott, J. H., Lehr, A. J. & Oxenham, A. J. Is relative pitch specific to pitch? Psychol. Sci. 19, 1263–1271 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  49. Borchert, E. M. O., Micheyl, C. & Oxenham, A. J. Perceptual grouping affects pitch judgments across time and frequency. J. Exp. Psychol. Hum. Percept. Perform. 37, 257–269 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  50. Warrier, C. M. & Zatorre, R. J. Influence of tonal context and timbral variation on perception of pitch. Percept. Psychophys. 64, 198–207 (2002).

    Article  PubMed  Google Scholar 

  51. Demany, L., Pressnitzer, D. & Semal, C. Tuning properties of the auditory frequency-shift detectors. J. Acoust. Soc. Am. 126, 1342–1348 (2009).

    Article  PubMed  Google Scholar 

  52. Chambers, C. et al. Prior context in audition informs binding and shapes simple features. Nat. Commun. 8, 15027 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Bregman, M. R., Patel, A. D. & Gentner, T. Q. Songbirds use spectral shape, not pitch, for sound pattern recognition. Proc. Natl Acad. Sci. USA 113, 1666–1671 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Gockel, H. E., Carlyon, R. & Plack, C. Across-frequency interference effects in fundamental frequency discrimination: questioning evidence for two pitch mechanisms. J. Acoust. Soc. Am. 116, 1092–1104 (2004).

    Article  PubMed  Google Scholar 

  55. Trainor, L. J., Desjardins, R. N. & Rockel, C. A comparison of contour and interval processing in musicians and nonmusicians using event-related potentials. Aust. J. Psychol. 51, 147–153 (1999).

    Article  Google Scholar 

  56. McDermott, J. H., Lehr, A. J. & Oxenham, A. J. Individual differences reveal the basis of consonance. Curr. Biol. 20, 1035–1041 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Moore, B. C., Glasberg, B. R. & Peters, R. W. Thresholds for hearing mistuned partials as separate tones in harmonic complexes. J. Acoust. Soc. Am. 80, 479–483 (1986).

    Article  CAS  PubMed  Google Scholar 

  58. Hartmann, W. M., McAdams, S. & Smith, B. K. Hearing a mistuned harmonic in an otherwise periodic complex tone. J. Acoust. Soc. Am. 88, 1712–1724 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Roberts, B. & Bailey, P. J. Spectral regularity as a factor distinct from harmonic relations in auditory grouping. J. Exp. Psychol. Hum. Percept. Perform. 22, 604–614 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Schön, D., Magne, C. & Besson, M. The music of speech: music training facilitates pitch processing in both music and language. Psychophysiology 41, 341–349 (2004).

    Article  PubMed  Google Scholar 

  61. Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech pevealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Patel, A. D. Can nonlinguistic musical training change the way the brain processes speech? The expanded OPERA hypothesis. Hearing Res. 308, 98–108 (2014).

    Article  Google Scholar 

  63. Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Woods, K. J. P., Siegel, M. H., Traer, J. & McDermott, J. Headphone screening to facilitate web-based auditory experiments. Atten. Percept. Psychophys. 79, 2064–2072 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Micheyl, K. Walker, B. Delgutte and the McDermott laboratory for comments on an earlier draft of this paper, D. Temperley for sharing code to generate melodies, C. Wang for assistance collecting data, V. Zhao for assistance selecting the Mandarin word pairs for experiment 5, and K. Woods for help implementing Mechanical Turk paradigms. This work was supported by a McDonnell Foundation Scholar Award to J.H.M., a National Institutes of Health (NIH) grant (1R01DC014739-01A1) to J.H.M., an NIH National Institute on Deafness and Other Communication Disorders training grant (T32DC000038) in support of M.J.M. and a National Science Foundation (NSF) Graduate Research Fellowship to M.J.M. The funding agencies were not otherwise involved in the research, and any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the McDonnell Foundation, NIH or NSF.

Author information

Authors and Affiliations

Authors

Contributions

M.J.M. designed the experiments, collected and analysed data and wrote the paper. J.H.M. designed the experiments and wrote the paper.

Corresponding author

Correspondence to Malinda J. McPherson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–9 and Supplementary Tables 1–3.

Life Sciences Reporting Summary

Supplementary Data

Raw data for Experiments 1–11 reported in the main text.

Supplementary Audio Files

Sample audio files (N = 59) for Experiments 1–11 reported in the main text.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McPherson, M.J., McDermott, J.H. Diversity in pitch perception revealed by task dependence. Nat Hum Behav 2, 52–66 (2018). https://doi.org/10.1038/s41562-017-0261-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-017-0261-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing