Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Right but not left hemispheric discrimination of faces in infancy

Abstract

The ontogeny of the functional asymmetries of the human brain is poorly understood. Are they a consequence of differential development based on competition mechanisms, or are they constitutive of the human brain architecture from the start? Using structural magnetic resonance imaging and a face-discrimination electroencephalography paradigm with lateralized presentation of faces, we studied face perception in infants over the first postnatal semester. We showed that the corpus callosum is sufficiently mature to transfer visual information across hemispheres, but the inter-hemispheric transfer time of early visual responses is modulated by callosal fibre myelination. We also revealed that only the right hemisphere shows evidence of face discrimination when presented in the left visual hemifield. This capability improved throughout the first semester with no evidence of discrimination in the left hemisphere. Face-processing lateralization is thus a characteristic of the infant’s extra-striate visual cortex, highlighting the differential left–right organization of the human brain already established in infanthood.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: EEG experimental paradigms.
Fig. 2: P1 component.
Fig. 3: Structure–function relationships.
Fig. 4: Grand averages according to the visual hemifields.
Fig. 5: Grand averages according to the face conditions.
Fig. 6: Comparison of N290 and P400 components across face conditions.

References

  1. 1.

    Dehaene, S. Reading in the Brain: The New Science of How We Read (Penguin, New York, NY, 2009).

  2. 2.

    Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    de Schonen, S. & Mathivet, E. First come, first served: a scenario about the development of hemispheric specialization in face recognition during infancy. Curr. Psychol. Cogn. 9, 3–44 (1989).

    Google Scholar 

  4. 4.

    Dehaene-Lambertz, G. & Spelke, E. S. The infancy of the human brain. Neuron 88, 93–109 (2015).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Leroy, F. et al. Early maturation of the linguistic dorsal pathway in human infants. J. Neurosci. 31, 1500–1506 (2011).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Dubois, J. et al. Microstructural correlates of infant functional development: example of the visual pathways. J. Neurosci. 28, 1943–1948 (2008).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Dubois, J. et al. Exploring the early organization and maturation of linguistic pathways in the human infant brain. Cereb. Cortex 26, 2283–2298 (2016).

    Article  PubMed  Google Scholar 

  8. 8.

    Johnson, M. H. Functional brain development in humans. Nat. Rev. Neurosci. 2, 475–483 (2001).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Saygin, Z. M. et al. Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19, 1250–1255 (2016).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Dundas, E. M., Plaut, D. C. & Behrmann, M. The joint development of hemispheric lateralization for words and faces. J. Exp. Psychol. Gen. 142, 348–358 (2013).

    Article  PubMed  Google Scholar 

  11. 11.

    Monzalvo, K., Fluss, J., Billard, C., Dehaene, S. & Dehaene-Lambertz, G. Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status. Neuroimage 61, 258–274 (2012).

    Article  PubMed  Google Scholar 

  12. 12.

    Dehaene, S. et al. How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Le Grand, R., Mondloch, C. J., Maurer, D. & Brent, H. P. Expert face processing requires visual input to the right hemisphere during infancy. Nat. Neurosci. 6, 1108–1112 (2003).

    Article  PubMed  Google Scholar 

  14. 14.

    Acerra, F., Burnod, Y. & de Schonen, S. Modelling aspects of face processing in early infancy. Dev. Sci. 5, 98–117 (2002).

    Article  Google Scholar 

  15. 15.

    Gauthier, I. & Nelson, C. A. The development of face expertise. Curr. Opin. Neurobiol. 11, 219–224 (2001).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Morton, J. & Johnson, M. H. CONSPEC and CONLERN: a two-process theory of infant face recognition. Psychol. Rev. 98, 164–181 (1991).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Bushnell, I. W. R., Sai, F. & Mullin, J. T. Neonatal recognition of the mother’s face. Br. J. Dev. Psychol. 7, 3–15 (1989).

    Article  Google Scholar 

  18. 18.

    Pascalis, O., de Schonen, S., Morton, J., Deruelle, C. & Fabre-Grenet, M. Mother’s face recognition by neonates: a replication and an extension. Infant Behav. Devel. 18, 79–85 (1995).

    Article  Google Scholar 

  19. 19.

    Turati, C., Bulf, H. & Simion, F. Newborns’ face recognition over changes in viewpoint. Cognition 106, 1300–1321 (2008).

    Article  PubMed  Google Scholar 

  20. 20.

    Cohen, L. B. & Strauss, M. S. Concept acquisition in the human infant. Child Dev. 50, 419–424 (1979).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Kelly, D. J. et al. Three-month-olds, but not newborns, prefer own-race faces. Dev. Sci. 8, F31–F36 (2005).

    Article  PubMed Central  PubMed  Google Scholar 

  22. 22.

    Quinn, P. C. et al. Infant preference for female faces occurs for same- but not other-race faces. J. Neuropsychol. 2, 15–26 (2008).

    Article  PubMed  Google Scholar 

  23. 23.

    Quinn, P. C., Yahr, J., Kuhn, A., Slater, A. M. & Pascalils, O. Representation of the gender of human faces by infants: a preference for female. Perception 31, 1109–1121 (2002).

    Article  PubMed  Google Scholar 

  24. 24.

    Righi, G., Westerlund, A., Congdon, E. L., Troller-Renfree, S. & Nelson, C. A. Infants’ experience-dependent processing of male and female faces: insights from eye tracking and event-related potentials. Dev. Cogn. Neurosci. 8, 144–152 (2014).

    Article  PubMed  Google Scholar 

  25. 25.

    de Haan, M., Pascalis, O. & Johnson, M. H. Specialization of neural mechanisms underlying face recognition in human infants. J. Cogn. Neurosci. 14, 199–209 (2002).

    Article  PubMed  Google Scholar 

  26. 26.

    Gliga, T. & Dehaene-Lambertz, G. Structural encoding of body and face in human infants and adults. J. Cogn. Neurosci. 17, 1328–1340 (2005).

    Article  PubMed  Google Scholar 

  27. 27.

    Gliga, T. & Dehaene-Lambertz, G. Development of a view-invariant representation of the human head. Cognition 102, 261–288 (2007).

    Article  PubMed  Google Scholar 

  28. 28.

    Halit, H., de Haan, M. & Johnson, M. H. Cortical specialisation for face processing: face-sensitive event-related potential components in 3- and 12-month-old infants. Neuroimage 19, 1180–1193 (2003).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Key, A. P. F. & Stone, W. L. Processing of novel and familiar faces in infants at average and high risk for autism. Dev. Cogn. Neurosci. 2, 244–255 (2012).

    Article  PubMed  Google Scholar 

  30. 30.

    Peykarjou, S., Pauen, S. & Hoehl, S. 9-month-old infants recognize individual unfamiliar faces in a rapid repetition ERP paradigm. Infancy 21, 288–311 (2016).

    Article  Google Scholar 

  31. 31.

    Scott, L. S. & Nelson, C. A. Featural and configural face processing in adults and infants: a behavioral and electrophysiological investigation. Perception 35, 1107–1128 (2006).

    Article  PubMed  Google Scholar 

  32. 32.

    Scott, L. S., Shannon, R. W. & Nelson, C. A. Neural correlates of human and monkey face processing in 9-month-old infants. Infancy 10, 171–186 (2006).

    Article  Google Scholar 

  33. 33.

    de Heering, A. & Rossion, B. Rapid categorization of natural face images in the infant right hemisphere. eLife 4, e06564 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  34. 34.

    Rossion, B., Torfs, K., Jacques, C. & Liu-Shuang, J. Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J. Vis. 15, 1–18 (2015).

    PubMed  Google Scholar 

  35. 35.

    Honda, Y. et al. How do infants perceive scrambled face? A near-infrared spectroscopic study. Brain Res. 1308, 137–146 (2010).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Nakato, E. et al. I know this face: neural activity during mother’s face perception in 7- to 8-month-old infants as investigated by near-infrared spectroscopy. Early Hum. Dev. 87, 1–7 (2011).

    Article  PubMed  Google Scholar 

  37. 37.

    Otsuka, Y. et al. Neural activation to upright and inverted faces in infants measured by near infrared spectroscopy. Neuroimage 34, 399–406 (2007).

    Article  PubMed  Google Scholar 

  38. 38.

    Nakato, E. et al. When do infants differentiate profile face from frontal face? A near-infrared spectroscopic study. Human Brain Mapp. 30, 462–472 (2009).

    Article  Google Scholar 

  39. 39.

    Tzourio-Mazoyer, N. et al. Neural correlates of woman face processing by 2-month-old infants. Neuroimage 15, 454–461 (2002).

    Article  PubMed  Google Scholar 

  40. 40.

    Deen, B. et al. Organization of high-level visual cortex in human infants. Nat. Commun. 8, 13995 (2017).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  41. 41.

    Scherf, K. S., Behrmann, M., Humphreys, K. & Luna, B. Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. Dev. Sci. 10, F15–F30 (2007).

    Article  PubMed  Google Scholar 

  42. 42.

    Cantlon, J. F., Pinel, P., Dehaene, S. & Pelphrey, K. A. Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21, 191–199 (2011).

    Article  PubMed  Google Scholar 

  43. 43.

    Gathers, A. D., Bhatt, R., Corbly, C. R., Farley, A. B. & Joseph, J. E. Developmental shifts in cortical loci for face and object recognition. Neuroreport 15, 1549–1553 (2004).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  44. 44.

    Golarai, G. et al. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nat. Neurosci. 10, 512–522 (2007).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  45. 45.

    Peelen, M. V., Glaser, B., Vuilleumier, P. & Eliez, S. Differential development of selectivity for faces and bodies in the fusiform gyrus. Dev. Sci. 12, F16–F25 (2009).

    Article  PubMed  Google Scholar 

  46. 46.

    Gomez, J. et al. Microstructural proliferation in human cortex is coupled with the development of face processing. Science 355, 68–71 (2017).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  47. 47.

    Rizzolatti, G., Umilta, C. & Berlucchi, G. Opposite superiorities of the right and left cerebral hemispheres in discriminative reaction time to physiognomical and alphabetical material. Brain 94, 431–442 (1971).

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Cohen, L. et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123, 291–307 (2000).

    Article  PubMed  Google Scholar 

  49. 49.

    Verosky, S. C. & Turk-Browne, N. B. Representations of facial identity in the left hemisphere require right hemisphere processing. J. Cogn. Neurosci. 24, 1006–1017 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  50. 50.

    de Schonen, S., de Diaz, M. G. D. & Mathivet, E. in Aspects of Face Processing (eds Ellis, H. D., Jeeves, M., Newcombe, F. & Young, A.) 199–209 (Springer Amsterdam, 1986).

  51. 51.

    de Schonen, S. & Mathivet, E. Hemispheric asymmetry in a face discrimination task in infants. Child Dev. 61, 1192–1205 (1990).

    Article  PubMed  Google Scholar 

  52. 52.

    Deruelle, C. & de Schonen, S. Do the right and left hemispheres attend to the same visuospatial information within a face in infancy? Dev. Neuropsychol. 14, 535–554 (1998).

    Article  Google Scholar 

  53. 53.

    Kostovic, I. & Jovanov-Milosevic, N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin. Fetal Neonatal Med. 11, 415–422 (2006).

    Article  PubMed  Google Scholar 

  54. 54.

    Brody, B. A., Kinney, H. C., Kloman, A. S. & Gilles, F. H. Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J. Neuropathol. Exp. Neurol. 46, 283–301 (1987).

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Yakovlev P. L. & Lecours, A. R. in Regional Development of the Brain in Early Life (ed. Minkowski, A.) 3–69 (Blackwell, Oxford, 1967).

  56. 56.

    Nakagawa, H. et al. Normal myelination of anatomic nerve fiber bundles: MR analysis. AJNR Am. J. Neuroradiol. 19, 1129–1136 (1998).

    CAS  PubMed  Google Scholar 

  57. 57.

    Levitan, S. & Reggia, J. A. A computational model of lateralization and asymmetries in cortical maps. Neural Comput. 12, 2037–2062 (2000).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    de Schonen, S. & Bry, I. Interhemispheric communication of visual learning: a developmental study in 3–6-month old infants. Neuropsychologia 25, 601–612 (1987).

    Article  PubMed  Google Scholar 

  59. 59.

    Liégeois, F., Bentejac, L. & de Schonen, S. When does inter-hemispheric integration of visual events emerge in infancy? A developmental study on 19- to 28-month-old infants. Neuropsychologia 38, 1382–1389 (2000).

    Article  PubMed  Google Scholar 

  60. 60.

    Sann, C. & Streri, A. Perception of object shape and texture in human newborns: evidence from cross-modal transfer tasks. Dev. Sci. 10, 399–410 (2007).

    Article  PubMed  Google Scholar 

  61. 61.

    Flechsig, P. E. Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage Vol. 1 (G. Thieme, Leipzig, 1920).

  62. 62.

    Dubois, J. et al. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276, 48–71 (2014).

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Neil, J., Miller, J., Mukherjee, P. & Huppi, P. S. Diffusion tensor imaging of normal and injured developing human brain—a technical review. NMR Biomed. 15, 543–552 (2002).

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Song, S. K. et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage 20, 1714–1722 (2003).

    Article  PubMed  Google Scholar 

  65. 65.

    Song, S. K. et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26, 132–140 (2005).

    Article  PubMed  Google Scholar 

  66. 66.

    McCulloch, D. L., Orbach, H. & Skarf, B. Maturation of the pattern-reversal VEP in human infants: a theoretical framework. Vision Res. 39, 3673–3680 (1999).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Westerhausen, R. et al. Interhemispheric transfer time and structural properties of the corpus callosum. Neurosci. Lett. 409, 140–145 (2006).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Whitford, T. J. et al. Predicting inter-hemispheric transfer time from the diffusion properties of the corpus callosum in healthy individuals and schizophrenia patients: a combined ERP and DTI study. Neuroimage 54, 2318–2329 (2011).

    Article  PubMed  Google Scholar 

  69. 69.

    Horowitz, A. et al. In vivo correlation between axon diameter and conduction velocity in the human brain. Brain Struct. Funct. 220, 1777–1788 (2015).

    Article  PubMed  Google Scholar 

  70. 70.

    Akaike, H. in International Encyclopedia of Statistical Science (ed. Lovric, M.) 25 (Springer, Berlin, 2011).

  71. 71.

    Lippe, S., Roy, M.-S., Perchet, C. & Lassonde, M. Electrophysiological markers of visuocortical development. Cereb. Cortex 17, 100–107 (2007).

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Allen, D., Tyler, C. W. & Norcia, A. M. Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant. Vision Res. 36, 1945–1953 (1996).

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Tachibanaki, S., Arinobu, D., Shimauchi-Matsukawa, Y., Tsushima, S. & Kawamura, S. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. Proc. Natl Acad. Sci. USA 102, 9329–9334 (2005).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  74. 74.

    Saron, C. D. & Davidson, R. J. Visual evoked potential measures of interhemispheric transfer time in humans. Behav. Neurosci. 103, 1115–1138 (1989).

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Honda, Y., Watanabe, S., Nakamura, M., Miki, K. & Kakigi, R. Interhemispheric difference for upright and inverted face perception in humans: an event-related potential study. Brain Topogr. 20, 31–39 (2007).

    Article  PubMed  Google Scholar 

  76. 76.

    Ringo, J. L., Doty, R. W., Demeter, S. & Simard, P. Y. Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex 4, 331–343 (1994).

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Kulke, L., Atkinson, J. & Braddick, O. Automatic detection of attention shifts in infancy: eye tracking in the fixation shift paradigm. PLoS ONE 10, e0142505 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  78. 78.

    Rossion, B. & Caharel, S. ERP evidence for the speed of face categorization in the human brain: disentangling the contribution of low-level visual cues from face perception. Vision Res. 51, 1297–1311 (2011).

    Article  PubMed  Google Scholar 

  79. 79.

    Yovel, G., Tambini, A. & Brandman, T. The asymmetry of the fusiform face area is a stable individual characteristic that underlies the left-visual-field superiority for faces. Neuropsychologia 46, 3061–3068 (2008).

    Article  PubMed  Google Scholar 

  80. 80.

    Kobayashi, M., Cassia, V. M., Kanazawa, S., Yamaguchi, M. K. & Kakigi, R. Perceptual narrowing towards adult faces is a cross-cultural phenomenon in infancy a behavioral and near-infrared spectroscopy study with Japanese infants. Dev. Sci. http://dx.doi.org/10.1111/desc.12498 (2016).

  81. 81.

    Kobayashi, M. et al. Do infants represent the face in a viewpoint-invariant manner? Neural adaptation study as measured by near-infrared spectroscopy. Front. Hum. Neurosci. 5, 153 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  82. 82.

    Sangrigoli, S. & de Schonen, S. Recognition of own-race and other-race faces by three-month-old infants. J. Child Psychol. Psychiatry 45, 1219–1227 (2004).

    Article  PubMed  Google Scholar 

  83. 83.

    Bhatt, R. S., Bertin, E., Hayden, A. & Reed, A. Face processing in infancy: developmental changes in the use of different kinds of relational information. Child Dev. 76, 169–181 (2005).

    Article  PubMed  Google Scholar 

  84. 84.

    Bhatt, R. S., Bertin, E., Hayden, A. & Reed, A. Face processing in infancy developmental changes in the use of different kinds of relational information. Child Dev. 76, 169–181 (2005).

    Article  PubMed  Google Scholar 

  85. 85.

    Weiner, K. S. et al. The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex 27, 146–161 (2016).

    Article  Google Scholar 

  86. 86.

    Kabdebon, C. et al. Anatomical correlations of the international 10–20 sensor placement system in infants. Neuroimage 99, 342–356 (2014).

    CAS  Article  PubMed  Google Scholar 

  87. 87.

    Dubois, J. et al. Correction strategy for diffusion-weighted images corrupted with motion: application to the DTI evaluation of infants’ white matter. Magn. Reson. Imaging 32, 981–992 (2014).

    Article  PubMed  Google Scholar 

  88. 88.

    Duclap, D. et al. Connectomist-2.0: a novel diffusion analysis toolbox for BrainVISA. in 29th ESMRMB (2012).

  89. 89.

    Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F. & Woolrich, M. W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34, 144–155 (2007).

    CAS  Article  PubMed  Google Scholar 

  90. 90.

    Hua, K. et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage 39, 336–347 (2008).

    Article  PubMed  Google Scholar 

  91. 91.

    Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  PubMed  Google Scholar 

  92. 92.

    Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  93. 93.

    Kouider, S. et al. A neural marker of perceptual consciousness in infants. Science 340, 376–380 (2013).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Fondation de France and the Fyssen Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank all the infants and their parents who participated in this study as well as G. Santoro and the medical team of UNIACT at Neurospin, who helped to carry out the experiments; C. Kabdebon, P. Barttfeld, J. Lebenberg and F. Leroy for their help with the EEG and MRI analyses; and E. Moulton for proofreading the text. We thank our colleagues for providing their pictures to be used as stimuli in our paradigm.

Author information

Affiliations

Authors

Contributions

All authors contributed to data collection, analysis, interpretation and drafting of the Article. J.D. and G.D.-L. designed the experiments.

Corresponding author

Correspondence to Ghislaine Dehaene-Lambertz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adibpour, P., Dubois, J. & Dehaene-Lambertz, G. Right but not left hemispheric discrimination of faces in infancy. Nat Hum Behav 2, 67–79 (2018). https://doi.org/10.1038/s41562-017-0249-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing