Article | Published:

The default network and the combination of cognitive processes that mediate self-generated thought

Nature Human Behaviourvolume 1pages896910 (2017) | Download Citation


Self-generated cognitions, such as recalling personal memories or empathizing with others, are ubiquitous and essential for our lives. Such internal mental processing is ascribed to the default mode network—a large network of the human brain—although the underlying neural and cognitive mechanisms remain poorly understood. Here, we tested the hypothesis that our mental experience is mediated by a combination of activities of multiple cognitive processes. Our study included four functional magnetic resonance imaging experiments with the same participants and a wide range of cognitive tasks, as well as an analytical approach that afforded the identification of cognitive processes during self-generated cognition. We showed that several cognitive processes functioned simultaneously during self-generated mental activity. The processes had specific and localized neural representations, suggesting that they support different aspects of internal processing. Overall, we demonstrate that internally directed experience may be achieved by pooling over multiple cognitive processes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).

  2. 2.

    Killingsworth, M. A. & Gilbert, D. T. A wandering mind is an unhappy mind. Science 330, 932 (2010).

  3. 3.

    Smallwood, J. Distinguishing how from why the mind wanders: a process–occurrence framework for self-generated mental activity. Psychol. Bull. 139, 519–535 (2013).

  4. 4.

    Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. NY Acad. Sci. 1316, 29–52 (2014).

  5. 5.

    Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377 (2007).

  6. 6.

    Addis, D. R., Pan, L., Vu, M.-A., Laiser, N. & Schacter, D. L. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia 47, 2222–2238 (2009).

  7. 7.

    Rabin, J. S., Gilboa, A., Stuss, D. T., Mar, R. A. & Rosenbaum, R. S. Common and unique neural correlates of autobiographical memory and theory of mind. J. Cogn. Neurosci. 22, 1095–1111 (2010).

  8. 8.

    Rabin, J. S. & Rosenbaum, R. S. Familiarity modulates the functional relationship between theory of mind and autobiographical memory. Neuroimage 62, 520–529 (2012).

  9. 9.

    Axelrod, V., Rees, G., Lavidor, M. & Bar, M. Increasing propensity to mind wander with transcranial direct current stimulation. Proc. Natl Acad. Sci. USA 112, 3314–3319 (2015).

  10. 10.

    Christoff, K., Gordon, A. M., Smallwood, J., Smith, R. & Schooler, J. W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl Acad. Sci. USA 106, 8719–8724 (2009).

  11. 11.

    Stawarczyk, D., Majerus, S., Maquet, P. & D’Argembeau, A. Neural correlates of ongoing conscious experience: both task-unrelatedness and stimulus-independence are related to default network activity. PLoS ONE 6, e16997 (2011).

  12. 12.

    Smallwood, J. & Schooler, J. W. The restless mind. Psychol. Bull. 132, 946–958 (2006).

  13. 13.

    Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

  14. 14.

    Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

  15. 15.

    Stawarczyk, D. & D’Argembeau, A. Neural correlates of personal goal processing during episodic future thinking and mind-wandering: an ALE meta-analysis. Hum. Brain Mapp. 36, 2928–2947 (2015).

  16. 16.

    Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage 111, 611–621 (2015).

  17. 17.

    Northoff, G. et al. Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage 31, 440–457 (2006).

  18. 18.

    Sajonz, B. et al. Delineating self-referential processing from episodic memory retrieval: common and dissociable networks. Neuroimage 50, 1606–1617 (2010).

  19. 19.

    Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

  20. 20.

    Qin, P. & Northoff, G. How is our self related to midline regions and the default-mode network? Neuroimage 57, 1221–1233 (2011).

  21. 21.

    Whitfield-Gabrieli, S. et al. Associations and dissociations between default and self-reference networks in the human brain. Neuroimage 55, 225–232 (2011).

  22. 22.

    Kurczek, J. et al. Differential contributions of hippocampus and medial prefrontal cortex to self-projection and self-referential processing. Neuropsychologia 73, 116–126 (2015).

  23. 23.

    Moran, J. M., Kelley, W. M. & Heatherton, T. F. What can the organization of the brain’s default mode network tell us about self-knowledge? Front. Hum. Neurosci. 7, 391 (2013).

  24. 24.

    Kim, H. A dual-subsystem model of the brain’s default network: self-referential processing, memory retrieval processes, and autobiographical memory retrieval. NeuroImage 61, 966–977 (2012).

  25. 25.

    Palombo, D., Hayes, S., Peterson, K., Keane, M. & Verfaellie, M. Medial temporal lobe contributions to episodic future thinking: scene construction or future projection? Cereb. Cortex (2016).

  26. 26.

    Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).

  27. 27.

    Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

  28. 28.

    Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).

  29. 29.

    Bird, C. M., Capponi, C., King, J. A., Doeller, C. F. & Burgess, N. Establishing the boundaries: the hippocampal contribution to imagining scenes. J. Neurosci. 30, 11688–11695 (2010).

  30. 30.

    Nyberg, L., Kim, A. S., Habib, R., Levine, B. & Tulving, E. Consciousness of subjective time in the brain. Proc. Natl Acad. Sci. USA 107, 22356–22359 (2010).

  31. 31.

    Tulving, E. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. C.) Ch. 20 (Oxford Univ. Press, New York, NY, 2002).

  32. 32.

    Peer, M., Salomon, R., Goldberg, I., Blanke, O. & Arzy, S. Brain system for mental orientation in space, time, and person. Proc. Natl Acad. Sci. USA 112, 11072–11077 (2015).

  33. 33.

    Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

  34. 34.

    Davey, J. et al. Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J. Neurosci. 35, 15230–15239 (2015).

  35. 35.

    Humphreys, G. F., Hoffman, P., Visser, M., Binney, R. J. & Ralph, M. A. L. Establishing task- and modality-dependent dissociations between the semantic and default mode networks. Proc. Natl Acad. Sci. USA 112, 7857–7862 (2015).

  36. 36.

    Vatansever, D. et al. Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour. Neuroimage 158, 1–11 (2017).

  37. 37.

    Sestieri, C., Corbetta, M., Romani, G. L. & Shulman, G. L. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J. Neurosci. 31, 4407–4420 (2011).

  38. 38.

    Sestieri, C., Shulman, G. L. & Corbetta, M. The contribution of the human posterior parietal cortex to episodic memory. Nat. Rev. Neurosci. 18, 183–192 (2017).

  39. 39.

    Rugg, M. D. & Vilberg, K. L. Brain networks underlying episodic memory retrieval. Curr. Opin. Neurobiol. 23, 255–260 (2013).

  40. 40.

    Foster, B. L., Rangarajan, V., Shirer, W. R. & Parvizi, J. Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 86, 578–590 (2015).

  41. 41.

    Chen, J. et al. Shared memories reveal shared structure in neural activity across individuals. Nat. Neurosci. 20, 115–125 (2017).

  42. 42.

    Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G. & Moscovitch, M. Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study. Neuropsychologia 50, 3094–3106 (2012).

  43. 43.

    Mars, R. B. et al. On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 6, 189 (2012).

  44. 44.

    Spreng, R. & Andrews-Hanna, J. in Brain Mapping: An Encyclopedic Reference (ed. Toga, A. W.) 165–169 (Academic Press, Cambridge, MA, 2015).

  45. 45.

    Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R. & Vogeley, K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious. Cogn. 17, 457–467 (2008).

  46. 46.

    Mitchell, J. P., Banaji, M. R. & Macrae, C. N. The link between social cognition and self-referential thought in the medial prefrontal cortex. J. Cogn. Neurosci. 17, 1306–1315 (2005).

  47. 47.

    Gilead, M. et al. Self-regulation via neural simulation. Proc. Natl Acad. Sci. USA 113, 10037–10042 (2016).

  48. 48.

    Hill, P. F., Yi, R., Spreng, R. N. & Diana, R. A. Neural congruence between intertemporal and interpersonal self-control: evidence from delay and social discounting. Neuroimage 162, 186–198 (2017).

  49. 49.

    Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind”. Neuroimage 19, 1835–1842 (2003).

  50. 50.

    Tusche, A., Smallwood, J., Bernhardt, B. C. & Singer, T. Classifying the wandering mind: revealing the affective content of thoughts during task-free rest periods. Neuroimage 97, 107–116 (2014).

  51. 51.

    Mayseless, N., Eran, A. & Shamay-Tsoory, S. G. Generating original ideas: the neural underpinning of originality. Neuroimage 116, 232–239 (2015).

  52. 52.

    Beaty, R. E. et al. Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia 64, 92–98 (2014).

  53. 53.

    Laird, A. R. et al. Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J. Neurosci. 29, 14496–14505 (2009).

  54. 54.

    Leech, R., Braga, R. & Sharp, D. J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 (2012).

  55. 55.

    Mars, R. B. et al. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb. Cortex 22, 1894–1903 (2012).

  56. 56.

    Bzdok, D. et al. Subspecialization in the human posterior medial cortex. Neuroimage 106, 55–71 (2015).

  57. 57.

    Bzdok, D. et al. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81, 381–392 (2013).

  58. 58.

    Leech, R., Kamourieh, S., Beckmann, C. F. & Sharp, D. J. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224 (2011).

  59. 59.

    Dastjerdi, M. et al. Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex. Proc. Natl Acad. Sci. USA 108, 3023–3028 (2011).

  60. 60.

    Seghier, M. L., Fagan, E. & Price, C. J. Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. J. Neurosci. 30, 16809–16817 (2010).

  61. 61.

    Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471.e5 (2017).

  62. 62.

    Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).

  63. 63.

    Utevsky, A. V., Smith, D. V. & Huettel, S. A. Precuneus is a functional core of the default-mode network. J. Neurosci. 34, 932–940 (2014).

  64. 64.

    Ramot, M. et al. A widely distributed spectral signature of task-negative electrocorticography responses revealed during a visuomotor task in the human cortex. J. Neurosci. 32, 10458–10469 (2012).

  65. 65.

    Bellana, B., Liu, Z. X., Diamond, N., Grady, C. & Moscovitch, M. Similarities and differences in the default mode network across rest, retrieval, and future imagining. Hum. Brain Mapp. 38, 1155–1171 (2017).

  66. 66.

    Spreng, R. N. & Grady, C. L. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J. Cogn. Neurosci. 22, 1112–1123 (2009).

  67. 67.

    D’Argembeau, A. et al. The neural basis of personal goal processing when envisioning future events. J. Cogn. Neurosci. 22, 1701–1713 (2010).

  68. 68.

    Tamir, D. I., Bricker, A. B., Dodell-Feder, D. & Mitchell, J. P. Reading fiction and reading minds: the role of simulation in the default network. Soc. Cogn. Affect. Neurosci. 11, 215–224 (2015).

  69. 69.

    Abraham, A., Schubotz, R. I. & von Cramon, D. Y. Thinking about the future versus the past in personal and non-personal contexts. Brain Res. 1233, 106–119 (2008).

  70. 70.

    Szpunar, K. K., Watson, J. M. & McDermott, K. B. Neural substrates of envisioning the future. Proc. Natl Acad. Sci. USA 104, 642–647 (2007).

  71. 71.

    Andrews-Hanna, J. R., Saxe, R. & Yarkoni, T. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. Neuroimage 91, 324–335 (2014).

  72. 72.

    Preminger, S., Harmelech, T. & Malach, R. Stimulus-free thoughts induce differential activation in the human default network. Neuroimage 54, 1692–1702 (2011).

  73. 73.

    Harrison, B. J. et al. Consistency and functional specialization in the default mode brain network. Proc. Natl Acad. Sci. USA 105, 9781–9786 (2008).

  74. 74.

    Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M. & Hendler, T. Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proc. Natl Acad. Sci. USA 110, 4950–4955 (2013).

  75. 75.

    Karapanagiotidis, T., Bernhardt, B. C., Jefferies, E. & Smallwood, J. Tracking thoughts: exploring the neural architecture of mental time travel during mind-wandering. Neuroimage 147, 272–281 (2017).

  76. 76.

    Smallwood, J. et al. Representing representation: integration between the temporal lobe and the posterior cingulate influences the content and form of spontaneous thought. PLoS ONE 11, e0152272 (2016).

  77. 77.

    Gorgolewski, K. J. et al. A correspondence between individual differences in the brain’s intrinsic functional architecture and the content and form of self-generated thoughts. PLoS ONE 9, e97176 (2014).

  78. 78.

    Andrews-Hanna, J. R., Reidler, J. S., Huang, C. & Buckner, R. L. Evidence for the default network’s role in spontaneous cognition. J. Neurophysiol. 104, 322–335 (2010).

  79. 79.

    Doucet, G. et al. Patterns of hemodynamic low-frequency oscillations in the brain are modulated by the nature of free thought during rest. Neuroimage 59, 3194–3200 (2012).

  80. 80.

    Poerio, G. L. et al. The role of the default mode network in component processes underlying the wandering mind. Soc. Cogn. Affect. Neurosci. 12, 1047–1062 (2017).

  81. 81.

    Medea, B. et al. How do we decide what to do? Resting-state connectivity patterns and components of self-generated thought linked to the development of more concrete personal goals. Exp. Brain Res. (2016).

  82. 82.

    De Caso, I., Poerio, G., Jefferies, E. & Smallwood, J. That’s me in the spotlight: neural basis of individual differences in self-consciousness. Soc. Cogn. Affect. Neurosci. 12, 1384–1393 (2017).

  83. 83.

    Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain's default network. Neuron 65, 550–562 (2010).

  84. 84.

    Kim, S., Dede, A. J., Hopkins, R. O. & Squire, L. R. Memory, scene construction, and the human hippocampus. Proc. Natl Acad. Sci. USA 112, 4767–4772 (2015).

  85. 85.

    Xu, X., Yuan, H. & Lei, X. Activation and connectivity within the default mode network contribute independently to future-oriented thought. Sci. Rep. 6, 21001 (2016).

  86. 86.

    Summerfield, J. J., Hassabis, D. & Maguire, E. A. Cortical midline involvement in autobiographical memory. Neuroimage 44, 1188–1200 (2009).

  87. 87.

    Irish, M. & Piguet, O. The pivotal role of semantic memory in remembering the past and imagining the future. Front. Behav. Neurosci. 7, 27 (2013).

  88. 88.

    Kim, H. Default network activation during episodic and semantic memory retrieval: a selective meta-analytic comparison. Neuropsychologia 80, 35–46 (2016).

  89. 89.

    Burianova, H. & Grady, C. L. Common and unique neural activations in autobiographical, episodic, and semantic retrieval. J. Cogn. Neurosci. 19, 1520–1534 (2007).

  90. 90.

    Woo, C.-W., Krishnan, A. & Wager, T. D. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91, 412–419 (2014).

  91. 91.

    Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl Acad. Sci. USA 113, 7900–7905 (2016).

  92. 92.

    Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2008).

  93. 93.

    Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).

  94. 94.

    Kelley, W. M. et al. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14, 785–794 (2002).

  95. 95.

    Goldberg, I. I., Harel, M. & Malach, R. When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50, 329–339 (2006).

  96. 96.

    Murray, R. J., Schaer, M. & Debbané, M. Degrees of separation: a quantitative neuroimaging meta-analysis investigating self-specificity and shared neural activation between self- and other-reflection. Neurosci. Biobehav. Rev. 36, 1043–1059 (2012).

  97. 97.

    Kriegeskorte, N. & Kievit, R. A. Representational geometry: integrating cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412 (2013).

  98. 98.

    Raizada, R. D. S. & Kriegeskorte, N. Pattern-information fMRI: new questions which it opens up and challenges which face it. Int. J. Imag. Syst. Technol. 20, 31–41 (2010).

  99. 99.

    Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., Tipper, S. P. & Downing, P. E. Surface-based information mapping reveals crossmodal vision–action representations in human parietal and occipitotemporal cortex. J. Neurophysiol. 104, 1077–1089 (2010).

  100. 100.

    Aminoff, E. M., Kveraga, K. & Bar, M. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 17, 379–390 (2013).

  101. 101.

    Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

  102. 102.

    Epstein, R. A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12, 388–396 (2008).

  103. 103.

    Baldassano, C., Esteva, A., Fei-Fei, L. & Beck, D. M. Two distinct scene-processing networks connecting vision and memory. eNeuro 3, 0178–16.2016 (2016).

  104. 104.

    Price, C. J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62, 816–847 (2012).

  105. 105.

    Fedorenko, E., Hsieh, P.-J., Nieto-Castañón, A., Whitfield-Gabrieli, S. & Kanwisher, N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).

  106. 106.

    Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006).

  107. 107.

    Fedorenko, E. & Thompson-Schill, S. L. Reworking the language network. Trends Cogn. Sci. 18, 120–126 (2014).

  108. 108.

    Friederici, A. D. The brain basis of language processing: from structure to function. Physiol. Rev. 91, 1357–1392 (2011).

  109. 109.

    Seghier, M. L. The angular gyrus multiple functions and multiple subdivisions. Neuroscientist 19, 43–61 (2013).

  110. 110.

    Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).

  111. 111.

    Bookheimer, S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu. Rev. Neurosci. 25, 151–188 (2002).

  112. 112.

    Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8, 976–987 (2007).

  113. 113.

    Ross, L. A. & Olson, I. R. What’s unique about unique entities? An fMRI investigation of the semantics of famous faces and landmarks. Cereb. Cortex 22, 2005–2015 (2011).

  114. 114.

    Axelrod, V. & Yovel, G. Successful decoding of famous faces in the fusiform face area. PLoS ONE 10, e0117126 (2015).

  115. 115.

    Wirth, M. et al. Semantic memory involvement in the default mode network: a functional neuroimaging study using independent component analysis. Neuroimage 54, 3057–3066 (2011).

  116. 116.

    Jackson, R. L., Hoffman, P., Pobric, G. & Ralph, M. A. L. The semantic network at work and rest: differential connectivity of anterior temporal lobe subregions. J. Neurosci. 36, 1490–1501 (2016).

  117. 117.

    Krieger-Redwood, K. et al. Down but not out in posterior cingulate cortex: deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. Neuroimage 141, 366–377 (2016).

  118. 118.

    Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

  119. 119.

    Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

  120. 120.

    Golland, Y. et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb. Cortex 17, 766–777 (2007).

  121. 121.

    Benoit, R. G. & Schacter, D. L. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75, 450–457 (2015).

  122. 122.

    Grady, C. L. et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb. Cortex 20, 1432–1447 (2009).

  123. 123.

    Salomon, R., Levy, D. R. & Malach, R. Deconstructing the default: cortical subdivision of the default mode/intrinsic system during self‐related processing. Hum. Brain Mapp. 35, 1491–1502 (2013).

  124. 124.

    O’Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci 12, 1013–1023 (2000).

  125. 125.

    Cichy, R. M., Heinzle, J. & Haynes, J.-D. Imagery and perception share cortical representations of content and location. Cereb. Cortex 22, 372–380 (2012).

  126. 126.

    Reddy, L., Tsuchiya, N. & Serre, T. Reading the mind’s eye: decoding category information during mental imagery. Neuroimage 50, 818–825 (2010).

  127. 127.

    Bar, M., Aminoff, E., Mason, M. & Fenske, M. The units of thought. Hippocampus 17, 420–428 (2007).

  128. 128.

    Chavez, R. S. & Heatherton, T. F. Representational similarity of social and valence information in the medial pFC. J. Cogn. Neurosci. 27, 73–82 (2015).

  129. 129.

    Poldrack, R. A. et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115–126 (2017).

  130. 130.

    Axelrod, V. & Yovel, G. Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32, 2442–2452 (2012).

  131. 131.

    Axelrod, V., Bar, M., Rees, G. & Yovel, G. Neural correlates of subliminal language processing. Cereb. Cortex 25, 2160–2169 (2015).

  132. 132.

    Axelrod, V. On the domain-specificity of the visual and non-visual face-selective regions. Eur. J. Neurosci. 44, 2049–2063 (2016).

  133. 133.

    Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).

  134. 134.

    Song, X.-W. et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE 6, e25031 (2011).

  135. 135.

    Siuda-Krzywicka, K. et al. Massive cortical reorganization in sighted Braille readers. eLife 5, e10762 (2016).

  136. 136.

    Wang, L. et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31, 496–504 (2006).

  137. 137.

    Zald, D. H. et al. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J. Neurosci. 28, 14372–14378 (2008).

  138. 138.

    Brett, M., Anton, J., Valabregue, R. & Poline, J. Region of interest analysis using an SPM toolbox. Neuroimage 16, 497 (2002).

  139. 139.

    Axelrod, V. Minimizing bugs in cognitive neuroscience programming. Front. Psychol. 5, 1435 (2014).

  140. 140.

    Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

  141. 141.

    Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).

  142. 142.

    Etzel, J. A., Zacks, J. M. & Braver, T. S. Searchlight analysis: promise, pitfalls, and potential. Neuroimage 78, 261–269 (2013).

  143. 143.

    Björnsdotter, M., Rylander, K. & Wessberg, J. A Monte Carlo method for locally multivariate brain mapping. Neuroimage 56, 508–516 (2011).

Download references


This work was supported by the Yad Hanadiv Rothschild fellowship (to V.A.), the Wellcome Trust (to G.R.) and the Israeli Center of Research Excellence in Cognitive Sciences (to M.B.). We also thank K. Siuda-Krzywicka and S. Schwarzkopf for advice, and N. Hale for technical assistance. No funders had any role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information


  1. Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel

    • Vadim Axelrod
    •  & Moshe Bar
  2. Institute of Cognitive Neuroscience, University College London, London, UK

    • Vadim Axelrod
    •  & Geraint Rees
  3. Wellcome Trust Centre for Neuroimaging, University College London, London, UK

    • Geraint Rees


  1. Search for Vadim Axelrod in:

  2. Search for Geraint Rees in:

  3. Search for Moshe Bar in:


V.A. and M.B. conceived the study. V.A. designed and performed the study. V.A. analysed the data with input from G.R. and M.B. V.A., G.R. and M.B. wrote the paper.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Vadim Axelrod.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Methods, Supplementary Results, Supplementary Tables 1–2, Supplementary Figures 1–4, Supplementary References

  2. Life Sciences Reporting Summary and MRI Studies Reporting Summary

About this article

Publication history





Further reading