Letter | Published:

Modulating musical reward sensitivity up and down with transcranial magnetic stimulation



Humans have the unique capacity to experience pleasure from aesthetic stimuli, such as art and music. Recent neuroimaging findings with music have led to a model in which mesolimbic striatal circuits interact with cortical systems to generate expectancies leading to pleasure1,2. However, neuroimaging approaches are correlational. Here, we provide causal evidence for the model by combining transcranial magnetic stimulation over the left dorsolateral prefrontal cortex to directly modulate fronto-striatal function3 bidirectionally together with measures of pleasure and motivation during music listening. Our results show that perceived pleasure, psychophysiological measures of emotional arousal, and the monetary value assigned to music, are all significantly increased by exciting fronto-striatal pathways, whereas inhibition of this system leads to decreases in all of these variables compared with sham stimulation. These findings support the hypothesis that fronto-striatal function causally mediates both the affective responses and motivational aspects of music-induced reward, and provide insights into how aesthetic responses emerge in the human brain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Salimpoor, V. N. et al. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216–219 (2013).

  2. 2.

    Martinez-Molina, N., Mas-Herrero, E., Rodriguez-Fornells, A., Zatorre, R. J. & Marco-Pallarés, J. The broken link in specific musical anhedonia: ventral striatum activation and functional connectivity with auditory cortex. Proc. Natl Acad. Sci. USA  113, E7337–E7345 (2016).

  3. 3.

    Strafella, A. P., Paus, T., Barrett, J. & Dagher, A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 21, RC157 (2001).

  4. 4.

    Berridge, K. C. & Kringelbach, M. L. Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199, 457–480 (2008).

  5. 5.

    Darwin, C. The Expression of the Emotions in Man and Animals (J. Murray, London, 1872).

  6. 6.

    Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R. & Zatorre, R. J. The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE 4, e7487 (2009).

  7. 7.

    Zentner, M., Grandjean, D. & Scherer, K. R. Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8, 494–521 (2008).

  8. 8.

    Kawakami, A., Furukawa, K., Katahira, K. & Okanoya, K. Sad music induces pleasant emotion. Front. Psychol. 4, 311 (2013).

  9. 9.

    Taruffi, L. & Koelsch, S. The paradox of music-evoked sadness: an online survey. PLoS ONE 9, e110490 (2014).

  10. 10.

    Sachs, M. E., Damasio, A. & Habibi, A. The pleasures of sad music: a systematic review. Front. Hum. Neurosci. 9, 404 (2015).

  11. 11.

    Meyer, L. B. Emotion and Meaning in Music (Univ. Chicago Press, Chicago and London, 1956).

  12. 12.

    Huron, D. B. Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, Cambridge, 2006).

  13. 13.

    Zatorre, R. J. & Halpern, A. R. Mental concerts: musical imagery and auditory cortex. Neuron 47, 9–12 (2005).

  14. 14.

    Peretz, I. et al. Music lexical networks: the cortical organization of music recognition. Ann. NY Acad. Sci. 1169, 256–265 (2009).

  15. 15.

    Janata, P. Acuity of mental representations of pitch. Ann. NY Acad. Sci. 1252, 214–221 (2012).

  16. 16.

    Zatorre, R. J. & Salimpoor, V. N. From perception to pleasure: music and its neural substrates. Proc. Natl Acad. Sci. USA 110 (Suppl. 2), 10430–10437 (2013).

  17. 17.

    Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A. & McIntosh, A. R. Predictions and the brain: how musical sounds become rewarding. Trends Cogn. Sci. 19, 86–91 (2015).

  18. 18.

    Zhang, L. I., Bao, S. & Merzenich, M. M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat. Neurosci. 4, 1123–1130 (2001).

  19. 19.

    Köver, H., Gill, K., Tseng, Y.-T. L. & Bao, S. Perceptual and neuronal boundary learned from higher-order stimulus probabilities. J. Neurosci. 33, 3699–3705 (2013).

  20. 20.

    Bao, S. Perceptual learning in the developing auditory cortex. Eur. J. Neurosci. 41, 718–724 (2015).

  21. 21.

    Albouy, P., Mattout, J., Sanchez, G., Tillmann, B. & Caclin, A. Altered retrieval of melodic information in congenital amusia: insights from dynamic causal modeling of MEG data. Front. Hum. Neurosci. 9, 20 (2015).

  22. 22.

    Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

  23. 23.

    Tillmann, B. et al. Cognitive priming in sung and instrumental music: activation of inferior frontal cortex. NeuroImage 31, 1771–1782 (2006).

  24. 24.

    Rohrmeier, M. A. & Koelsch, S. Predictive information processing in music cognition. Acritical review. Int. J. Psychophysiol. 83, 164–175 (2012).

  25. 25.

    Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001).

  26. 26.

    Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A. & Zatorre, R. J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 14, 257–262 (2011).

  27. 27.

    Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15, 170–180 (2014).

  28. 28.

    Critchley, H. D., Mathias, C. J. & Dolan, R. J. Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 29, 537–545 (2001).

  29. 29.

    Knutson, B., Adams, C. M., Fong, G. W. & Hommer, D. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21, RC159 (2001).

  30. 30.

    Ito, R., Dalley, J. W., Robbins, T. W. & Everitt, B. J. Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J. Neurosci. 22, 6247–6253 (2002).

  31. 31.

    O’Doherty, J. P., Deichmann, R., Critchley, H. D. & Dolan, R. J. Neural responses during anticipation of a primary taste reward. Neuron 33, 815–826 (2002).

  32. 32.

    Wallis, J. D. & Miller, E. K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).

  33. 33.

    Tsujimoto, S. & Sawaguchi, T. Neuronal activity representing temporal prediction of reward in the primate prefrontal cortex. J. Neurophysiol. 93, 3687–3692 (2005).

  34. 34.

    Beiser, D. G. & Houk, J. C. Model of cortical-basal ganglionic processing: encoding the serial order of sensory events. J. Neurophysiol. 79, 3168–3188 (1998).

  35. 35.

    Grahn, J. A. & Rowe, J. B. Finding and feeling the musical beat: striatal dissociations between detection and prediction of regularity. Cereb. Cortex 23, 913–921 (2013).

  36. 36.

    Gebauer, L., Kringelbach, M. L. & Vuust, P. Ever-changing cycles of musical pleasure: The role of dopamine and anticipation. Psychomusicol. Music Mind Brain 22, 152–167 (2012).

  37. 37.

    Pogarell, O. et al. Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study. J. Psychiat. Res. 40, 307–314 (2006).

  38. 38.

    Pogarell, O. et al. Acute prefrontal rTMS increases striatal dopamine to a similar degree as D-amphetamine. Psychiat. Res. 156, 251–255 (2007).

  39. 39.

    Ko, J. H. et al. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task: a TMS-[(11)C]raclopride PET study. Eur. J. Neurosci. 28, 2147–2155 (2008).

  40. 40.

    Hayashi, T., Ko, J. H., Strafella, A. P. & Dagher, A. Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proc. Natl Acad. Sci. USA 110, 4422–4427 (2013).

  41. 41.

    Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

  42. 42.

    Keck, M. E. et al. Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 43, 101–109 (2002).

  43. 43.

    Zangen, A. & Hyodo, K. Transcranial magnetic stimulation induces increases in extracellular levels of dopamine and glutamate in the nucleus accumbens. NeuroReport 13, 2401–2405 (2002).

  44. 44.

    Erhardt, A. et al. Repetitive transcranial magnetic stimulation increases the release of dopamine in the nucleus accumbens shell of morphine-sensitized rats during abstinence. Neuropsychopharmacology 29, 2074–2080 (2004).

  45. 45.

    Kanno, M., Matsumoto, M., Togashi, H., Yoshioka, M. & Mano, Y. Effects of acute repetitive transcranial magnetic stimulation on dopamine release in the rat dorsolateral striatum. J. Neurol. Sci. 217, 73–81 (2004).

  46. 46.

    Huang, Y.-Z., Edwards, M. J., Rounis, E., Bhatia, K. P. & Rothwell, J. C. Theta burst stimulation of the human motor cortex. Neuron 45, 201–206 (2005).

  47. 47.

    Di Lazzaro, V. et al. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex. J. Physiol. 565, 945–950 (2005).

  48. 48.

    Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A. & Marco-Pallarés, J. Dissociation between musical and monetary reward responses in specific musical anhedonia. Curr. Biol. 24, 699–704 (2014).

  49. 49.

    Grewe, O., Nagel, F., Kopiez, R. & Altenmüller, E. How does music arouse ‘chills’? Investigating strong emotions, combining psychological, physiological, and psychoacoustical methods. Ann. NY Acad. Sci. 1060, 446–449 (2005).

  50. 50.

    Mas-Herrero, E., Marco-Pallares, J., Lorenzo-Seva, U., Zatorre, R. J. & Rodriguez-Fornells, A. Individual differences in music reward experiences. Music Percept. Interdiscip. J. 31, 118–138 (2013).

  51. 51.

    Schellenberg, E. G., Peretz, I. & Vieillard, S. Liking for happy- and sad-sounding music: Effects of exposure. Cogn. Emot. 22, 218–237 (2008).

  52. 52.

    van den Bosch, I., Salimpoor, V. N. & Zatorre, R. J. Familiarity mediates the relationship between emotional arousal and pleasure during music listening. Front. Hum. Neurosci. 7, (2013).

  53. 53.

    Pereira, C. S. et al. Music and emotions in the brain: familiarity matters. PLoS ONE 6, e27241 (2011).

  54. 54.

    Peretz, I., Gaudreau, D. & Bonnel, A. M. Exposure effects on music preference and recognition. Mem. Cogn. 26, 884–902 (1998).

  55. 55.

    Sescousse, G., Caldú, X., Segura, B. & Dreher, J.-C. Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci. Biobehav. Rev. 37, 681–696 (2013).

  56. 56.

    Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

  57. 57.

    Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).

  58. 58.

    Pan, W.-X., Schmidt, R., Wickens, J. R. & Hyland, B. I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J. Neurosci. 25, 6235–6242 (2005).

  59. 59.

    Schott, B. H. et al. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J. Neurosci. 28, 14311–14319 (2008).

  60. 60.

    D’Ardenne, K., McClure, S. M., Nystrom, L. E. & Cohen, J. D. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319, 1264–1267 (2008).

  61. 61.

    Hart, A. S., Rutledge, R. B., Glimcher, P. W. & Phillips, P. E. M. Phasic dopamine release in the rat nucleus accumbens symmetrically encodes a reward prediction error term. J. Neurosci. 34, 698–704 (2014).

  62. 62.

    Chang, C. Y. et al. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors. Nat. Neurosci. 19, 111–116 (2016).

  63. 63.

    Volkow, N. D. et al. ‘Nonhedonic’ food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44, 175–180 (2002).

  64. 64.

    Volkow, N. D. et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J. Neurosci. 26, 6583–6588 (2006).

  65. 65.

    Vanderschuren, L. J. M. J., Di Ciano, P. & Everitt, B. J. Involvement of the dorsal striatum in cue-controlled cocaine seeking. J. Neurosci. 25, 8665–8670 (2005).

  66. 66.

    Letchworth, S. R., Nader, M. A., Smith, H. R., Friedman, D. P. & Porrino, L. J. Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J. Neurosci. 21, 2799–2807 (2001).

  67. 67.

    Porrino, L. J., Lyons, D., Smith, H. R., Daunais, J. B. & Nader, M. A. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J. Neurosci. 24, 3554–3562 (2004).

  68. 68.

    Sloboda, J. A. & O’Neill, S. A. in Music and Emotion: Theory and Research (eds Juslin, P. N. & Sloboda, J. A.) 415–429 (Oxford Univ. Press, Oxford, 2001).

  69. 69.

    Chamorro-Premuzic, T. & Furnham, A. Personality and music: can traits explain how people use music in everyday life? Br. J. Psychol. 98, 175–185 (2007).

  70. 70.

    Cho, S. S. & Strafella, A. P. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE 4, e6725 (2009).

  71. 71.

    Lan, M. J., Chhetry, B. T., Liston, C., Mann, J. J. & Dubin, M. Transcranial magnetic stimulation of left dorsolateral prefrontal cortex induces brain morphological changes in regions associated with a treatment resistant major depressive episode: an exploratory analysis. Brain Stimulat. 9, 577–583 (2016).

  72. 72.

    Pujara, M. S., Philippi, C. L., Motzkin, J. C., Baskaya, M. K. & Koenigs, M. Ventromedial prefrontal cortex damage is associated with decreased ventral striatum volume and response to reward. J. Neurosci. 36, 5047–5054 (2016).

  73. 73.

    Liu, X., Hairston, J., Schrier, M. & Fan, J. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 35, 1219–1236 (2011).

  74. 74.

    Samanez-Larkin, G. R. et al. Anticipation of monetary gain but not loss in healthy older adults. Nat. Neurosci. 10, 787–791 (2007).

  75. 75.

    Treadway, M. T. & Zald, D. H. Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537–555 (2011).

  76. 76.

    Jordan, L. L., Zahodne, L. B., Okun, M. S. & Bowers, D. Hedonic and behavioral deficits associated with apathy in Parkinson’s disease: potential treatment implications. Mov. Disord. 28, 1301–1304 (2013).

  77. 77

    Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A. & Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 120, 2008–2039 (2009).

  78. 78

    Rossini, P. M. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 91, 79–92 (1994).

Download references


R.J.Z. is supported by funds from the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council of Canada, and the Canada Fund for Innovation. A.D is funded by the CIHR Foundation Grant. E.M.-H. was supported by the Jeanne Timmins Costello Fellowship and the CIBC Fellowship in Brain Imaging from the Montreal Neurological Institute. The funders had no role in the conceptualization, design, data collection, analysis, decision to publish or preparation of the manuscript.

Author information

E.M.-H., A.D. and R.J.Z. designed the experiment. E.M.-H. ran and analysed the data (with the supervision of A.D. and R.J.Z). All authors wrote the manuscript.

Competing interests

The authors declare no competing interests.

Correspondence to Robert J. Zatorre.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Supplementary Tables 1,2; Supplementary Figures 1,2

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Schematic of the experimental approach used.
Fig. 2: Schematic of the experimental paradigm.
Fig. 3: Main results of the study.