Identifying suicidal young adults

Functional brain-imaging methods provide rich datasets that can be exploited by machine-learning techniques to help assess psychiatric disorders. A recent study uses this approach to identify patients with suicidal thoughts, and to distinguish those who have attempted suicide from those who have not.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Stephan, K. E. et al. Lancet Psychiatry 3, 77–83 (2016).

    Article  PubMed  Google Scholar 

  2. 2.

    Just, M. A. et al. Nat. Hum. Behav. 1, (2017).

  3. 3.

    Curtis, V. A. et al. Schizophr. Res. 37, 35–44 (1999).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Prvulovic, D., Bokde, A., Fatraco, F. & Hampel, H. Prog. Neurobiol. 95, 557–569 (2011).

    Article  PubMed  Google Scholar 

  5. 5.

    Koshino, H. et al. Cereb. Cortex 18, 289–300 (2008).

    Article  PubMed  Google Scholar 

  6. 6.

    Harrison, B. J. et al. Arch. Gen. Psychiatry 66, 1189–1200 (2009).

    Article  PubMed  Google Scholar 

  7. 7.

    Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G. & Just, M. A. PLoS ONE 8, e66032 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Horwitz, B. & Rowe, J. B. Prog. Neurobiol. 95, 505–509 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Barry Horwitz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horwitz, B. Identifying suicidal young adults. Nat Hum Behav 1, 860–861 (2017).

Download citation