Differential hemispheric and visual stream contributions to ensemble coding of crowd emotion

Abstract

In crowds, where scrutinizing individual facial expressions is inefficient, humans can make snap judgments about the prevailing mood by reading ‘crowd emotion’. We investigated how the brain accomplishes this feat in a set of behavioural and functional magnetic resonance imaging studies. Participants were asked to either avoid or approach one of two crowds of faces presented in the left and right visual hemifields. Perception of crowd emotion was improved when crowd stimuli contained goal-congruent cues and was highly lateralized to the right hemisphere. The dorsal visual stream was preferentially activated in crowd emotion processing, with activity in the intraparietal sulcus and superior frontal gyrus predicting perceptual accuracy for crowd emotion perception, whereas activity in the fusiform cortex in the ventral stream predicted better perception of individual facial expressions. Our findings thus reveal significant behavioural differences and differential involvement of the hemispheres and the major visual streams in reading crowd versus individual face expressions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sample face images, sample trials of crowd emotion and individual emotion conditions, and the results from experiment 1.
Fig. 2: RH dominance for goal-relevant crowd emotion in crowd emotion processing.
Fig. 3: Effect of the sex-specific identity cue of facial crowds on crowd emotion perception.
Fig. 4: Distinct neural pathways preferentially involved in dorsal and ventral visual pathways for crowd emotion and individual emotion processing, respectively.
Fig. 5: Brain activations by different types of avoidance comparisons.

References

  1. 1.

    Alvarez, G. A. Representing multiple objects as an ensemble enhances visual cognition. Trends Cogn. Sci. 15, 122–131 (2011).

    PubMed  Article  Google Scholar 

  2. 2.

    Fischer, J. & Whitney, D. Object-level visual information gets through the bottleneck of crowding. J. Neurophysiol. 106, 1389–1398 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Haberman, J., Harp, T. & Whitney, D. Averaging facial expression over time. J. Vis. 9, 1–13 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Haberman, J. & Whitney, D. Efficient summary statistical representation when change localization fails. Psychon. Bull. Rev. 18, 855–859 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Dakin, S. C. & Watt, R. J. The computation of orientation statistics from visual texture. Vision Res. 37, 3181–3192 (1997).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Parkes, L., Lund, J., Angelucci, A., Solomon, J. A. & Morgan, M. Compulsory averaging of crowded orientation signals in human vision. Nat. Neurosci. 4, 739–744 (2001).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Ariely, D. Seeing sets: representation by statistical properties. Psychol. Sci. 12, 157–162 (2001).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Chong, S. C. & Treisman, A. Representation of statistical properties. Vision Res. 43, 393–404 (2003).

    PubMed  Article  Google Scholar 

  9. 9.

    Watamaniuk, S. N. J. & Sekuler, R. Temporal and spatial integration in dynamic random-dot stimuli. Vision Res. 32, 2341–2347 (1992).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Halberda, J., Sires, S. F. & Feigenson, L. Multiple spatially overlapping sets can be enumerated in parallel. Psychol. Sci. 17, 572–576 (2006).

    PubMed  Article  Google Scholar 

  11. 11.

    Alvarez, G. A. & Oliva, A. The representation of simple ensemble visual features outside the focus of attention. Psychol. Sci. 19, 392–398 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Choo, H. & Franconeri, S. L. Objects with reduced visibility still contribute to size averaging. Atten. Percept. Psychophys. 72, 86–99 (2010).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Corbett, J. E. & Oriet, C. The whole is indeed more than the sum of its parts: Perceptual averaging in the absence of individual item representation. Acta Psychol. 138, 289–301 (2011).

    Article  Google Scholar 

  14. 14.

    Haberman, J. & Whitney, D. The visual system discounts emotional deviants when extracting average expression. Atten. Percept. Psychophys. 72, 1825–1838 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Im, H. Y. & Halberda, J. The effects of sampling and internal noise on the representation of ensemble average size. Atten. Percept. Psychophys. 75, 278–286 (2013).

    PubMed  Article  Google Scholar 

  16. 16.

    Haberman, J. & Whitney, D. Rapid extraction of mean emotion and gender from sets of faces. Curr. Biol. 17, R751–R753 (2007).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Hubert-Wallander, B. & Boynton, G. M. Not all summary statistics are made equal: evidence from extracting summaries across time. J. Vis. 15, 1–12 (2015).

    Article  Google Scholar 

  18. 18.

    Ji, L., Chen, W. & Fu, X. Different roles of foveal and extrafoveal vision in ensemble representation for facial expressions. EPCE 8532, 164–173 (2014).

    Google Scholar 

  19. 19.

    Yang, J.-W., Yoon, K. L., Chong, S. C. & Oh, K. J. Accurate but pathological: social anxiety and ensemble coding of emotion. Cog. Ther. Res. 37, 572–578 (2013).

    Article  Google Scholar 

  20. 20.

    De Fockert, J. W. & Wolfenstein, C. Rapid extraction of mean identity from sets of faces. Q. J. Exp. Psychol. 62, 1716–1722 (2009).

    Article  Google Scholar 

  21. 21.

    Leib, A. Y., Puri, A. M., Fischer, J., Bentin, S., Whitney, D. & Robertson, L. Crowd perception in prosopagnosia. Neuropsychologia 50, 1698–1707 (2012).

    PubMed  Article  Google Scholar 

  22. 22.

    Leib, A. Y., Fischer, J., Liu, Y., Qiu, S., Robertson, L. & Whitney, D. Ensemble crowd perception: a viewpoint-invariant mechanism to represent average crowd identity. J. Vis. 14, 1–13 (2014).

    Google Scholar 

  23. 23.

    Neumann, M. F., Schweinberger, S. R. & Burton, A. M. Viewers extract mean and individual identity from sets of famous faces. Cognition 128, 56–63 (2013).

    PubMed  Article  Google Scholar 

  24. 24.

    Brunyé, T. T., Howe, J. L. & Mahoney, C. R. Seeing the crowd for the bomber: spontaneous threat perception from static and randomly moving crowd simulations. J. Exp. Psychol. Appl. 20, 303–322 (2014).

    PubMed  Article  Google Scholar 

  25. 25.

    Sweeny, T. D., Haroz, S. & Whitney, D. Perceiving group behavior: sensitive ensemble coding mechanisms for biological motion of human crowds. J. Exp. Psychol. Hum. Percept. Perform. 39, 329–337 (2013).

    PubMed  Article  Google Scholar 

  26. 26.

    Florey, J., Clifford, C. W., Dakin, S. & Mareschal, I. Spatial limitations in averaging social cues. Sci. Rep. 6, 32210 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Sweeny, T. D. & Whitney, D. Perceiving crowd attention: ensemble perception of a crowd’s gaze. Psychol. Sci. 25, 1903–1913 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Adams, R. B. Jr., Ambady, N., Macrae, C. N. & Kleck, R. E. Emotional expressions forecast approach-avoidance behavior. Motiv. Emot. 30, 179–188 (2006).

    Article  Google Scholar 

  29. 29.

    Horstmann, G. What do facial expressions convey: feeling states, behavioral intentions, or action requests? Emotion 3, 150–166 (2003).

    PubMed  Article  Google Scholar 

  30. 30.

    Marsh, A. A., Ambady, N. & Kleck, R. E. The effects of fear and anger facial expressions on approach- and avoidance-related behaviors. Emotion 5, 119–124 (2005).

    PubMed  Article  Google Scholar 

  31. 31.

    Davidson, R. J. Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 20, 125–151 (1992).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Elliot, A. J. Approach and avoidance motivation and achievement goals. Educ. Psychol. 34, 169–189 (1999).

    Article  Google Scholar 

  33. 33.

    Adams, R. B. Jr., Hess, U. & Kleck, R. E. The intersection of gender-related facial appearance and facial displays of emotion. Emot. Rev. 7, 5–13 (2015).

    Article  Google Scholar 

  34. 34.

    Bargh, J. A., Chen, M. & Burrows, L. Automaticity of social behavior: direct effects of trait construct and stereotype activation on action. J. Pers. Soc. Psychol. 71, 230–244 (1996).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Davidson, R. J. & Irwin, W. The functional neuroanatomy of emotion and affective style. Trends Cogn. Sci. 3, 11–21 (1999).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    De Renzi, E. Prosopagnosia in two patients with CT scan evidence of damage confined to the right hemisphere. Neuropsychologia 24, 385–389 (1986).

    PubMed  Article  Google Scholar 

  37. 37.

    Fabes, R. A. & Martin, C. L. Gender and age stereotypes of emotionality. Pers. Soc. Psychol. Bull. 17, 532–540 (1991).

    Article  Google Scholar 

  38. 38.

    Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  PubMed  Google Scholar 

  39. 39.

    Wada, Y. & Yamamoto, T. Selective impairment of facial recognition due to a haematoma restricted to the right fusiform and lateral occipital region. J. Neurol. Neurosurg. Psychiatry 71, 254–257 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Merigan, W. H. & Maunsell, J. H. How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16, 369–402 (1993).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Sawatari, A. & Callaway, E. M. Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex. Nature 380, 442–446 (1996).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Freud, E., Plaut, D. C. & Behrmann, M. ‘What’ is happening in the dorsal visual pathway. Trends Cogn. Sci. 20, 773–784 (2016).

    PubMed  Article  Google Scholar 

  43. 43.

    Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Kveraga, K., Boshyan, J. & Bar, M. The magnocellular trigger of top-down facilitation in object recognition. J. Neurosci. 27, 13232–13240 (2007).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kveraga, K., Ghuman, A. S. & Bar, M. Top-down predictions in the cognitive brain. Brain Cogn. 65, 145–168 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Livingstone, M. S. & Hubel, D. E. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 (1988).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Milner, A. D. & Goodale, M. A. The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  48. 48.

    Milner, A. D. & Goodale, M. A. Two visual systems re-viewed. Neuropsychologia 46, 774–785 (2008).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Schiller, P. H. & Logothetis, N. K. The color- opponent and broad-band channels of the primate visual system. Trends Neurosci. 13, 392–398 (1990).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Thomas, C., Kveraga, K., Huberle, E., Karnath, H.-O. & Bar, M. Enabling global processing in simultanagnosia by psychophysical biasing of visual pathways. Brain 135, 1578–1585 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci. 6, 624–631 (2003).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Winston, J. S., Vuilleumier, P. & Dolan, R. J. Effects of low-spatial frequency components of fearful faces on fusiform cortex activity. Curr. Biol. 13, 1824–1829 (2003).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Object and spatial visual working memory activate separate neural systems in human cortex. Cereb. Cortex 6, 39–49 (1996).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G. & Haxby, J. V. An area specialized for spatial working memory in human frontal cortex. Science 279, 1347–1351 (1998).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Sala, J. B. & Courtney, S. M. Binding of what and where during working memory maintenance. Cortex 43, 5–21 (2007).

    PubMed  Article  Google Scholar 

  56. 56.

    Takahashi, E., Ohki, K. & Kim, D.-S. Dissociation and convergence of the dorsal and ventral visual streams in the human prefrontal cortex. Neuroimage 65, 488–498 (2013).

    PubMed  Article  Google Scholar 

  57. 57.

    Wilson, F. A., Scalaidhe, S. P. & Goldman-Rakic, P. S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Denys, K. et al. The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J. Neurosci. 24, 2551–2565 (2004).

    PubMed  Article  Google Scholar 

  59. 59.

    Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Haxby, J. V. et al. Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc. Natl Acad. Sci. USA 88, 1621–1625 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Purves, D. et al. Neuroscience 3rd edn (Sinauer Associates, Sunderland, MA, 2004).

    Google Scholar 

  62. 62.

    Taylor, J. C., Wiggett, A. J. & Downing, P. E. Functional MRI analysis of body and body part representations in extrastriate and fusiform body parts. J. Neurophysiol. 98, 1626–1633 (2007).

    PubMed  Article  Google Scholar 

  63. 63.

    LeDoux, J. E. The Emotional Brain (Simon and Schuster, New York, NY, 1996).

    Google Scholar 

  64. 64.

    Morris, J. S. et al. A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383, 812–815 (1996).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Damasio, A. R. et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat. Neurosci. 3, 1049–1056 (2000).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron 30, 829–841 (2001).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Zald, D. H. The human amygdala and the emotional evaluation of sensory stimuli. Brain Res. Brain Res. Rev. 41, 88–123 (2003).

    PubMed  Article  Google Scholar 

  68. 68.

    Whalen, P. J. et al. Human amygdala responsivity to masked fearful eye whites. Science 306, 2061 (2004).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Ekman, P. & Friesen, W. V. Pictures of Facial Affect (Consulting Psychologists Press, Palo Alto, CA, 1976).

    Google Scholar 

  70. 70.

    Botvinick, M. M., Cohen, J. D. & Carter, C. S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–545 (2004).

    PubMed  Article  Google Scholar 

  71. 71.

    Jonides, J. & Nee, D. E. Brain mechanisms of proactive interference in working memory. Neuroscience 139, 181–193 (2006).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Monsell, S. Task switching. Trends Cogn. Sci. 7, 134–140 (2003).

    PubMed  Article  Google Scholar 

  73. 73.

    Rogers, R. D. & Monsell, S. The costs of a predictable switch between simple cognitive tasks. J. Exp. Psychol. Gen. 124, 207–231 (1995).

    Article  Google Scholar 

  74. 74.

    Theios, J. in Attention and Performance V (eds Rabbitt, P. M. A. & Dornic, S.) 418–440 (Academic Press, New York, NY, 1975).

  75. 75.

    Christie, J., Ginsberg, J. P., Steedman, J., Fridriksson, J., Bonilha, L. & Rorden, C. Global versus local processing: seeing the left side of the forest and the right side of the trees. Front. Hum. Neurosci. 6, 28 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Delis, D. C., Robertson, L. C. & Efron, R. Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia 24, 205–214 (1986).

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Robertson, L. C., Lamb, M. R. & Knight, R. T. Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. J. Neurosci. 8, 3757–3769 (1988).

    CAS  PubMed  Google Scholar 

  78. 78.

    Robertson, L. C. & Ivry, R. Hemispheric asymmetry: attention to visual and auditory primitives. Curr. Dir. Psychol. Sci. 9, 59–63 (2000).

    Article  Google Scholar 

  79. 79.

    Yovel, G., Levy, J. & Yovel, I. Hemispheric asymmetries for global and local visual perception: effects of stimulus and task factors. J. Exp. Psychol. Hum. Percept. Perform. 27, 1369–1385 (2001).

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Becker, D. V., Kenrick, D. T., Neuberg, S. L., Blackwell, K. C. & Smith, D. M. The confounded nature of angry men and happy women. J. Pers. Soc. Psychol. 92, 179–190 (2007).

    PubMed  Article  Google Scholar 

  81. 81.

    Borod, J. C. et al. Right hemisphere emotional perception: evidence across multiple channels. Neuropsychology 12, 446–458 (1998).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Silberman, E. K. & Weingartner, H. Hemispheric lateralization of functions related to emotion. Brain Cogn. 5, 322–353 (1986).

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Tzourio-Mazoyer, N. et al. Automatic anatomical labelling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Denison, R. N., Vu, A. T., Yacoub, E., Feinberg, D. A. & Silver, M. A. Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. Neuroimage 102, 358–369 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Adams, R. B. Jr. et al. Compound facial threat cue perception: contributions of visual pathways, aging, and anxiety. J. Vis. 16, 1375 (2016).

    Article  Google Scholar 

  86. 86.

    Im, H. Y., Adams, R. B., Jr., Boshyan, J., Ward, N., Cushing, C. & Kveraga, K. Anxiety modulates perception of facial fear in a pathway-specific, lateralized manner. Preprint at http://www.biorxiv.org/content/early/2017/05/24/141838 (2017).

  87. 87.

    Kveraga, K. in Scene Vision: Making Sense of What We See (eds Kveraga, K. & Bar, M.) 291–307 (MIT Press, Cambridge, MA, 2014).

  88. 88.

    Erk, S., Kleczar, A. & Walter, H. Valence-specific regulation effects in a working memory task with emotional context. Neuroimage 37, 623–632 (2007).

    PubMed  Article  Google Scholar 

  89. 89.

    Heller, W. & Nitscke, J. B. Regional brain activity in emotion: a framework for understanding cognition in depression. Cogn. Emot. 11, 637–661 (1997).

    Article  Google Scholar 

  90. 90.

    Yang, Q., Wang, X., Yin, S., Zhao, X., Tan, J. & Chen, A. Improved emotional conflict control triggered by the processing priority of negative emotion. Sci. Rep. 6, 24302 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Adams, R. B. Jr. & Kveraga, K. Social vision: functional forecasting and the integration of compound social cues. Rev. Philos. Psychol. 6, 591–610 (2015).

    Article  Google Scholar 

  92. 92.

    Rogers, L. J., Vallortigara, G. & Andrew, R. J. Divided Brains: The Biology and Behavior of Brain Asymmetries (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  93. 93.

    Scott, W. A. Cognitive complexity and cognitive flexibility. Sociometry 25, 405–414 (1962).

    Article  Google Scholar 

  94. 94.

    Craig, A. D. Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn. Sci. 9, 566–571 (2005).

    PubMed  Article  Google Scholar 

  95. 95.

    Davidson, R. J. in Brain Asymmetry, Cerebral Asymmetry, Emotion, and Affective Style (eds Davidson, R. J. & Hugdahl, K.) 361–387 (MIT Press, Cambridge, MA, 1995).

  96. 96.

    Ivry, R. B. & Robertson, L. C. The Two Sides of Perception (MIT Press, Cambridge, MA, 1998).

    Google Scholar 

  97. 97.

    Carroll, N. C. & Young, A. W. Priming of emotion recognition. Q. J. Exp. Psychol. 58, 1173–1197 (2005).

    Article  Google Scholar 

  98. 98.

    Norman, D. A. & Shallice, T. in Consciousness and Self-Regulation: Advances in Research and Theory IV (eds Davidson, R., Schwartz, R. & Shapiro, D.) 376–390 (Plenum Press, New York, NY, 1986).

  99. 99.

    Posner, M. I., Rueda, M. R. & Kanske, P. in Handbook of Psychophysiology (eds Cacioppo, J. T., Tassinary, J. G. & Berntson, G. G.) 410–414 (Cambridge Univ. Press, Cambridge, 2007).

  100. 100.

    Cant, J. S., Sun, S. Z. & Xu, Y. Distinct cognitive mechanisms involved in the processing of single objects and object ensembles. J. Vis. 15, 1–21 (2015).

    Article  Google Scholar 

  101. 101.

    Chong, S. C., Joo, S. J., Emmmanouil, T. & Treisman, A. Statistical processing: not so implausible after all. Percept. Psychophys. 70, 1327–1334 (2008).

    PubMed  Article  Google Scholar 

  102. 102.

    Chong, S. C. & Evans, K. K. Distributed vs. focused attention (count vs. estimate). Wiley Interdiscip. Rev. Cogn. Sci. 2, 634–638 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Chong, S. C. & Treisman, A. Attentional spread in the statistical processing of visual displays. Percept. Psychophys. 67, 1–13 (2005).

    PubMed  Article  Google Scholar 

  104. 104.

    Haberman, J., Brady, T. F. & Alvarez, G. A. Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation. J. Exp. Psychol. Gen. 144, 432–446 (2015).

    PubMed  Article  Google Scholar 

  105. 105.

    Myczek, K. & Simons, D. J. Better than average: alternatives to statistical summary representations for rapid judgments of average size. Percept. Psychophys. 70, 772–788 (2008).

    PubMed  Article  Google Scholar 

  106. 106.

    Cant, J. S. & Xu, Y. The impact of density and ratio on object-ensemble representation in human anterior-medial ventral visual cortex. Cereb. Cortex 25, 4226–4239 (2015).

    PubMed  Article  Google Scholar 

  107. 107.

    Cant, J. S. & Xu, Y. The contribution of object shape and surface properties to object-ensemble representation in anterior-medial ventral visual cortex. J. Cogn. Neurosci. 29, 398–412 (2017).

    PubMed  Article  Google Scholar 

  108. 108.

    Huis In ‘t Veld, E. M. J. & de Gelder, B. From individual fear to mass panic. The neurological basis of crowd perception. Hum. Brain Mapp. 36, 2338–1351 (2015).

    PubMed  Article  Google Scholar 

  109. 109.

    Utochkin, I. S. Ensemble summary statistics as a basis for rapid visual categorization. J. Vis. 15, 1–14 (2015).

    Google Scholar 

  110. 110.

    Brady, T. F. & Alvarez, G. A. No evidence for a fixed object limit in working memory: ensemble representations inflate estimates of working memory capacity for complex objects. J. Exp. Psychol. Learn. Mem. Cogn. 41, 921–929 (2015).

    PubMed  Article  Google Scholar 

  111. 111.

    Cohen, M. A., Dennett, D. C. & Kanwisher, N. What is the bandwidth of perceptual experience? Trends Cogn. Sci. 19, 324–335 (2016).

    Article  Google Scholar 

  112. 112.

    Feigenson, L. in Space, Time, and Number in the Brain: Searching for the Foundations of Mathematical Thought (eds Dehaene, S. & Brannon, E.) 13–22 (Elsevier, London, 2011).

  113. 113.

    Im, H. Y. & Chong, S. C. Mean size as a unit of visual working memory. Perception 43, 663–676 (2014).

    PubMed  Article  Google Scholar 

  114. 114.

    Im, H. Y., Park, W. J. & Chong, S. C. Ensemble statistics as units of selection. J. Cogn. Psychol. 27, 114–127 (2015).

    Article  Google Scholar 

  115. 115.

    Cowan, N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–185 (2001).

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Luck, S. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Pylyshyn, Z. W. & Storm, R. W. Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat. Vis. 3, 179–197 (1988).

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Haberman, J. & Whitney, D. in From Perception to Consciousness: Searching with Anne Treisman (eds Wolfe, J. & Robertson, L.) Ch. 16 (Oxford Univ. Press, Oxford, 2012).

  120. 120.

    Brady, T. F. & Alvarez, G. A. Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychol. Sci. 22, 384–392 (2011).

    PubMed  Article  Google Scholar 

  121. 121.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, Hillsdale, NJ, 1988).

    Google Scholar 

  122. 122.

    Brainard, D. H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Maule, J. & Franklin, A. Effects of ensemble complexity and perceptual similarity on rapid averaging of hue. J. Vis. 15, 1–18 (2015).

    Article  Google Scholar 

  125. 125.

    Utochkin, I. S. & Tiurina, N. A. Parallel averaging of size is possible but range-limited: a reply to Marchant, Simons, and De Fockert. Acta Psychologica 146, 7–18 (2014).

    PubMed  Article  Google Scholar 

  126. 126.

    Fitts, P. M. & Seeger, C. M. S-R compatibility: spatial characteristics of stimulus and response codes. J. Exp. Psychol. 46, 199–201 (1953).

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Deichmann, R., Gottfried, J. A., Hutton, C. & Turner, R. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19, 430–441 (2003).

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Wall, M. B., Walker, R. & Smith, A. T. Functional imaging of the human superior colliculus: an optimised approach. Neuroimage 47, 1620–1627 (2009).

    PubMed  Article  Google Scholar 

  129. 129.

    Kringelbach, M. L. & Rolls, E. T. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72, 341–372 (2004).

    PubMed  Article  Google Scholar 

  130. 130.

    Mazaika P. K., Hoeft, F., Glover G. H. & Reiss A. L. Methods and software for fMRI analysis for clinical subjects. In Poster Session Presented at the Meeting of Human Brain Mapping 2009 (2009).

  131. 131.

    Fischl, B. et al. Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22 (2004).

    PubMed  Article  Google Scholar 

  132. 132.

    Spiridon, M., Fischl, B. & Kanwisher, N. Location and spatial profile of category-specific regions in human extrastriate cortex. Hum. Brain Mapp. 27, 77–89 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01MH101194) to K.K. and R.B.A. Jr. Data collection was conducted at the Pennsylvania State University. Informed written consent was obtained for all the studies according to the procedures of the Institutional Review Board at the Pennsylvania State University. The participants received a course credit for their participation. No funders had any role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

H.Y.I., R.B.A. Jr and K.K. developed the study concept and all authors contributed to the study design. Testing and data collection were performed by H.Y.I, C.A.C., T.G.S. and D.N.A. H.Y.I analysed the data and all authors wrote the paper.

Corresponding author

Correspondence to Kestutis Kveraga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Results; Supplementary Figures 1–10; Supplementary Tables 1–4

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Im, H., Albohn, D.N., Steiner, T.G. et al. Differential hemispheric and visual stream contributions to ensemble coding of crowd emotion. Nat Hum Behav 1, 828–842 (2017). https://doi.org/10.1038/s41562-017-0225-z

Download citation

Further reading