Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The idiosyncratic nature of confidence

Abstract

Confidence is the ‘feeling of knowing’ that accompanies decision-making. Bayesian theory proposes that confidence is a function solely of the perceived probability of being correct. Empirical research has suggested, however, that different individuals may perform different computations to estimate confidence from uncertain evidence. To test this hypothesis, we collected confidence reports in a task in which subjects made categorical decisions about the mean of a sequence. We found that for most individuals, confidence did indeed reflect the perceived probability of being correct. However, in approximately half of them, confidence also reflected a different probabilistic quantity: the perceived uncertainty in the estimated variable. We found that the contribution of both quantities was stable over weeks. We also observed that the influence of the perceived probability of being correct was stable across two tasks, one perceptual and one cognitive. Overall, our findings provide a computational interpretation of individual differences in human confidence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tracking mean evidence in rapid serial visual presentations.
Fig. 2: Estimating confidence.
Fig. 3: Analysis of confidence across individuals.
Fig. 4: Stability across time.
Fig. 5: Decisions and confidence in experiment 3 (N = 20).
Fig. 6: Consistency across tasks involving uncertainty in the perceptual and cognitive domain. Twenty participants that were not tested in experiments 1 or 2 performed one visual and one numerical task (experiment 3). As in Fig. 3, we decomposed confidence in terms of the weight of \(\hat{p}\left({\rm{correct}}\right)\) (β p), the weight of information (β I), and the overall confidence (α 3).

References

  1. 1.

    Meyniel, F., Schlunegger, D. & Dehaene, S. The sense of confidence during probabilistic learning: a normative account. PLoS Comput. Biol. 11, e1004305 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Yeung, N. & Summerfield, C. Metacognition in human decision-making: confidence and error monitoring. Phil. Trans. R. Soc. Lond. B 367, 1310–1321 (2012).

    Article  Google Scholar 

  3. 3.

    Bahrami, B. et al. Optimally interacting minds. Science 329, 1081–1085 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bahrami, B. et al. What failure in collective decision-making tells us about metacognition. Phil. Trans. R. Soc. Lond. B 367, 1350–1365 (2012).

    Article  Google Scholar 

  5. 5.

    Tetlock, P. in Expert Political Judgment: How Good Is It? How Can We Know? (Princeton University Press, Princeton, New Jersey, 2005).

  6. 6.

    Graziano, M. & Sigman, M. The spatial and temporal construction of confidence in the visual scene. PLoS ONE 4, e4909 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ais, J., Zylberberg, A., Barttfeld, P. & Sigman, M. Individual consistency in the accuracy and distribution of confidence judgments. Cognition 146, 377–386 (2016).

    Article  PubMed  Google Scholar 

  8. 8.

    Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J. & Rees, G. Relating introspective accuracy to individual differences in brain structure. Science 329, 1541–1543 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Barttfeld, P. et al. Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs. Proc. Natl Acad. Sci. USA 110, 11577–11582 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. Confidence in value-based choice. Nat. Neurosci. 16, 105–110 (2013).

    Article  PubMed  Google Scholar 

  11. 11.

    Aitchison, L., Bang, D., Bahrami, B. & Latham, P. E. Doubly Bayesian analysis of confidence in perceptual decision-making. PLoS Comput. Biol. 11, e1004519 (2015).

  12. 12.

    Kepecs, A. & Mainen, Z. F. A computational framework for the study of confidence in humans and animals. Phil. Trans. R. Soc. Lond. B 367, 1322–1337 (2012).

    Article  Google Scholar 

  13. 13.

    Meyniel, F., Sigman, M. & Mainen, Z. F. Confidence as Bayesian probability: from neural origins to behavior. Neuron 88, 78–92 (2015).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and certainty: distinct probabilistic quantities for different goals. Nat. Neurosci. 19, 366–374 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Sanders, J., Hangya, B. & Kepecs, A. Signatures of a statistical computation in the human sense of confidence. Neuron 90, 499–506 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Tversky, A. & Kahneman, D. Judgment under uncertainty: heuristics and biases. Science 185, 1124–1131 (1974).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Navajas, J., Bahrami, B. & Latham, P. E. Post-decisional accounts of biases in confidence. Curr. Opin Behav. Sci. 11, 55–60 (2016).

    Article  Google Scholar 

  18. 18.

    Pouget, A., Deneve, S. & Latham, P. E. in Visual Attention and Cortical Circuits (eds Braun, J., Koch, C. & Davis, J.) 265–283 (MIT Press, Cambridge, 2001).

    Google Scholar 

  19. 19.

    Moreno-Bote, R. et al. Information-limiting correlations. Nat. Neurosci. 17, 1410–1417 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hangya, B., Sanders, J. I. & Kepecs, A. A mathematical framework for statistical decision confidence. Neural Comput. 28, 1840–1858 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    McCullagh, P. Regression models for ordinal data. J. Roy. Statist. Soc. B 42, 109–142 (1980).

    Google Scholar 

  22. 22.

    Petrusic, W. M. & Baranski, J. V. Judging confidence influences decision processing in comparative judgments. Psychon. Bull. Rev 10, 177–183 (2003).

    Article  PubMed  Google Scholar 

  23. 23.

    Pleskac, T. J. & Busemeyer, J. R. Two-stage dynamic signal detection: a theory of choice, decision time, and confidence. Psychol. Rev. 117, 864 (2010).

  24. 24.

    Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Lak, A. et al. Orbitofrontal cortex is required for optimal waiting based on decision confidence. Neuron 84, 190–201 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

  27. 27.

    van den Berg, R. et al. A common mechanism underlies changes of mind about decisions and confidence. Elife 5,  e12192 (2016).

  28. 28.

    Barthelme, S. & Mamassian, P. Flexible mechanisms underlie the evaluation of visual confidence. Proc. Natl Acad. Sci. USA 107, 20834–20839 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Pescetelli, N., Rees, G. & Bahrami, B. The perceptual and social components of metacognition. J. Exp. Psychol. Gen. 145, 949 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Fleming, S. M., Dolan, R. J. & Frith, C. D. Metacognition: computation, biology and function. Phil. Trans. R. Soc. Lond. B 367, 1280–1286 (2012).

    Article  Google Scholar 

  31. 31.

    Fleming, S. M., Ryu, J., Golfinos, J. G. & Blackmon, K. E. Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions. Brain 137, 2811–2822 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Zylberberg, A., Roelfsema, P. R. & Sigman, M. Variance misperception explains illusions of confidence in simple perceptual decisions. Conscious. Cogn. 27, 246–253 (2014).

    Article  PubMed  Google Scholar 

  33. 33.

    de Gardelle, V. & Mamassian, P. Weighting mean and variability during confidence judgments. PLoS ONE 10, e0120870 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Pouget, A., Beck, J. M., Ma, W. J. & Latham, P. E. Probabilistic brains: knowns and unknowns. Nat. Neurosci. 16, 1170–1178 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    van Bergen, R. S., Ma, W. J., Pratte, M. S. & Jehee, J. F. Sensory uncertainty decoded from visual cortex predicts behavior. Nat. Neurosci. 18, 1728 (2015).

  36. 36.

    Nieder, A. & Dehaene, S. Representation of number in the brain. Annu. Rev. Neurosci. 32, 185–208 (2009).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Neisser, U. et al. Intelligence: knowns and unknowns. Am. Psychol. 51, 77–101 (1996).

    Article  Google Scholar 

  38. 38.

    Goldberg, L. R. The structure of phenotypic personality traits. Am. Psychol. 48, 26–34 (1993).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Kanai, R. & Rees, G. The structural basis of inter-individual differences in human behaviour and cognition. Nat. Rev. Neurosci. 12, 231–242 (2011).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Dubois, J. & Adolphs, R. Building a science of individual differences from fMRI. Trends Cogn. Sci. 20, 425–443 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    van Gaal, S., Scholte, H. S., Lamme, V. A., Fahrenfort, J. J. & Ridderinkhof, K. R. Pre-SMA gray-matter density predicts individual differences in action selection in the face of conscious and unconscious response conflict. J. Cogn. Neurosci. 23, 382–390 (2011).

    Article  PubMed  Google Scholar 

  42. 42.

    Schwarzkopf, D. S., Song, C. & Rees, G. The surface area of human V1 predicts the subjective experience of object size. Nat. Neurosci. 14, 28–30 (2011).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Smith, S. M. et al. A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nat. Neurosci. 18, 1565–1567 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kanai, R., Bahrami, B., Roylance, R. & Rees, G. Online social network size is reflected in human brain structure. Proc. Biol. Sci. 279, 1327–1334 (2012).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Weil, L. G. et al. The development of metacognitive ability in adolescence. Conscious. Cogn. 22, 264–271 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Palmer, E. C., David, A. S. & Fleming, S. M. Effects of age on metacognitive efficiency. Conscious. Cogn. 28, 151–160 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    David, A. S., Bedford, N., Wiffen, B. & Gilleen, J. Failures of metacognition and lack of insight in neuropsychiatric disorders. Phil. Trans. R. Soc. Lond. B 367, 1379–1390 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

J.N. and B.B. were supported by the European Research Council StG (NEUROCODEC, no. 309865); C.H. was supported by a studentship from the Medical Research Council (UK); H.F. was supported by a Chevening scholarship; M.K. and P.E.L. were supported by the Gatsby Charitable Foundation. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

J.N. and B.B. designed the experiments. J.N., C.H. and H.F. conducted the experiments. J.N., M.K., P.E.L. and B.B. developed the analysis approach and computational models. J.N. analysed the data. J.N., P.E.L. and B.B. wrote the paper.

Corresponding author

Correspondence to Joaquin Navajas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Notes, Supplementary Figures 1–8, Supplementary References

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navajas, J., Hindocha, C., Foda, H. et al. The idiosyncratic nature of confidence. Nat Hum Behav 1, 810–818 (2017). https://doi.org/10.1038/s41562-017-0215-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing