Brain response patterns to economic inequity predict present and future depression indices

Abstract

Widening economic inequity has been suggested to associate with depression. However, little is known about the underlying neural mechanisms of this link. Here, we demonstrate that functional magnetic resonance imaging activity patterns in the amygdala and hippocampus induced by the inequity between the self and other rewards during an economic game can predict participants’ present and future (measured one year later) depression indices. Such predictions were not possible using participant’s behavioural and socio-economic status measures. These findings suggest that sensitivity to economic inequity has a critical effect on human mood states, and the amygdala and hippocampus play a key role in individual differences in the effect.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Tasks and responses.
Fig. 2: Basic brain activity during the ultimatum game.
Fig. 3: Prediction of the present and one-year change in BDI scores.
Fig. 4: Prediction of the present BDI scores from absolute-value inequity responses.

References

  1. 1.

    Piketty, T. Capital in the Twenty-first Century (Belknap Press, Cambridge, MA, 2014).

    Google Scholar 

  2. 2.

    Kawachi, I. & Kennedy, B. P. The Health of Nation: Why Inequity is Harmful to Your Health (The New Press, New York, NY, 2002).

    Google Scholar 

  3. 3.

    Wilkinson, R. G. & Pickett, K. E. Income inequality and population health: a review and explanation of the evidence. Soc. Sci. Med. 62, 1768–1784 (2006).

    Article  PubMed  Google Scholar 

  4. 4.

    Marmot, M. G. et al. Health inequalities among British civil servants: the Whitehall II study. The Lancet 337, 1387–1393 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    Hamad, R., Fernald, L. C., Karlan, D. S. & Zinman, J. Social and economic correlates of depressive symptoms and perceived stress in South African adults. J. Epidemiol. Community Health 62, 538–544 (2008).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Stansfeld, S. A., Head, J., Fuhrer, R., Wardle, J. & Cattell, V. Social inequalities in depressive symptoms and physical functioning in the Whitehall II study: exploring a common cause explanation. J. Epidemiol. Community Health 57, 361–367 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Turner, R. J., Lloyd, D. A. & Roszell, P. Personal resources and the social distribution of depression. Am. J. Community Psychol. 27, 643–672 (1999).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Jang, K. L. The Behavioral Genetics of Psychopathology: A Clinical Guide (Lawrence Erlbaum Association, Mahwah, NJ, 2008).

    Google Scholar 

  9. 9.

    Messick, D. M. & McClintock, C. G. Motivational bases of choice in experimental games. J. Exp. Soc. Psychol. 4, 1–25 (1968).

    Article  Google Scholar 

  10. 10.

    Van Lange, P. A. M. The pursuit of joint outcomes and equality in outcomes: an integrative model of social value orientation. J. Pers. Soc. Psychol. 77, 337–349 (1999).

    Article  Google Scholar 

  11. 11.

    Gospic, K. et al. Limbic justice—amygdala involvement in immediate rejection in the Ultimatum Game. PLoS Biol. 9, e1001054 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Haruno, M. & Frith, C. D. Activity in the amygdala elicited by unfair divisions predicts social value orientation. Nat. Neurosci. 13, 160–161 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Haruno, M., Kimura, M. & Frith, C. D. Activity in the nucleus accumbens and amygdala underlies individual differences in prosocial and individualistic economic choices. J. Cog. Neurosci. 26, 1861–1870 (2014).

    Article  Google Scholar 

  14. 14.

    Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A. & Costafreda, S. G. Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 37, 152–163 (2013).

    Article  PubMed  Google Scholar 

  15. 15.

    Matthews, S. C., Strigo, I. A., Simmons, A. N., Yang, T. T. & Paulus, M. P. Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. J. Affect. Disord. 111, 13–20 (2008).

    Article  PubMed  Google Scholar 

  16. 16.

    Bremner, J. D. et al. Hippocampal volume reduction in major depression. Am. J. Psychiatry 157, 115–118 (2000).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Lorenzetti, V., Allen, N. B., Fornito, A. & Yücel, M. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J. Affect. Disord. 117, 1–17 (2009).

    Article  PubMed  Google Scholar 

  18. 18.

    Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G. & Vannier, M. W. Hippocampal atrophy in recurrent major depression. Proc. Natl Acad. Sci. USA 93, 3908–3913 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Nestler, E. J., Hyman, S. E. & Malenka, R. J. Molecular Neuro-pharmacology. A Foundation for Clinical Neuroscience 2nd edn (McGraw-Hill, New York, NY, 2009).

    Google Scholar 

  20. 20.

    Akiskal, H. S., Hirschfeld, R. M. & Yerevanian, B. I. The relationship of personality to affective disorders. Arc. Gen. Psychiatry 40, 801–810 (1983).

    CAS  Article  Google Scholar 

  21. 21.

    Von Zerssen, D., Tauscher, R. & Possl, J. The relationship of premorbid personality to subtypes of an affective illness. A replication study by means of an operationalized procedure for the diagnosis of personality structures. J. Affect. Disord. 32, 61–72 (1994).

    Article  Google Scholar 

  22. 22.

    Güth, W., Schmittberger, R. & Schwarze, B. An experimental analysis of ultimatum bargaining. J. Econ. Behav. Organ. 3, 367–388 (1982).

    Article  Google Scholar 

  23. 23.

    Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E. & Cohen, J. D. The neural basis of economic decision-making in the ultimatum game. Science 300, 1755–1758 (2003).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Beck, A. T., Steer, R. A., Ball, R. & Ranieri, W. Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J. Pers. Assess. 67, 588–597 (1996).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Tricomi, E., Rangel, A., Camerer, C. & O’Doherty, J. Neural evidence for inequality averse social preferences. Nature 463, 1089–1091 (2011).

    Article  Google Scholar 

  26. 26.

    Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21, 806–812 (2016).

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Michl, P. et al. Neurobiological underpinnings of shame and guilt: a pilot fMRI study. Soc. Cogn. Affect. Neurosci. 9, 150–157 (2014).

    Article  PubMed  Google Scholar 

  28. 28.

    Doerig, N. et al. Neural representation and clinically relevant moderators of individualised self-criticism in healthy subjects. Soc. Cogn. Affect. Neurosci. 9, 1333–1340 (2014).

    Article  PubMed  Google Scholar 

  29. 29.

    Eldar, E. & Niv, Y. Interaction between emotional state and learning underlies mood instability. Nat. Commun. 6, 6149 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Eldar, E., Rutledge, R. B., Dolan, R. J. & Niv, Y. Mood as representation of momentum. Trends Cogn. Sci. 20, 15–24 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Headey, B. & Veenhoven, R. in How Harmful is Hapiness? Consequences of Enjoying Life or Not (ed. Veenhoven, R.) 106–127 (Universitaire Pers, Rotterdam, 1989).

  32. 32.

    Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Ogawa, T. & Oda, M. Construction and Evaluation of the Facial Expression Database ATR Technical Report TR-H-244 (1998).

  34. 34.

    Bishop, C. M. Pattern Recognition and Machine Learning (Springer, New York, NY, 2006).

    Google Scholar 

  35. 35.

    Shawe-Taylor, J. & Cristianini, N. Kernel Methods for Pattern Analysis (University Press, Cambridge, 2004).

    Google Scholar 

  36. 36.

    Tipping, M. E. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001).

    Google Scholar 

  37. 37.

    Vapnik, V., Golowich, S. E. & Smola, A. Support vector method for function approximation, regression estimation, and signal processing. In Proc. 9th International Conference on Neural Information Processing Systems 281–287 (MIT Press, Cambridge, MA, 1996).

Download references

Acknowledgements

This work was supported by Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), the Center of Innovation at Osaka University and Grant-in-Aid for Scientific Research (KAKENNHI) (17H06314 and 26242087). We are grateful to S. Tada and T. Haji for technical assistance and P. Karagiannis for editing an early version of the manuscript. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

M.H. and T.Y. designed the study. T.T. conducted the experiment. T.T. and M.H. analysed the data. T.T. and M.H. wrote the paper.

Corresponding author

Correspondence to Masahiko Haruno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–9, Supplementary Tables 1–5, Supplementary Methods

Life Sciences Reporting Summary and Reporting Summary for MRI studies

Life Science Reporting Summary and Reporting Summary for MRI

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, T., Yamamoto, T. & Haruno, M. Brain response patterns to economic inequity predict present and future depression indices. Nat Hum Behav 1, 748–756 (2017). https://doi.org/10.1038/s41562-017-0207-1

Download citation

Further reading