Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Social tipping points in global groundwater management

Abstract

Groundwater is critical to global food security, environmental flows, and millions of rural livelihoods in the face of climate change1. Although a third of Earth’s largest groundwater basins are being depleted by irrigated agriculture2, little is known about the conditions that lead resource users to comply with conservation policies. Here we developed an agent-based model3,4 of irrigated agriculture rooted in principles of cooperation5,6 and collective action7 and grounded on the World Values Survey Wave 6 (n = 90,350). Simulations of three major aquifer systems facing unsustainable demands reveal tipping points where social norms towards groundwater conservation shift abruptly with small changes in cultural values and monitoring and enforcement provisions. These tipping points are amplified by group size and best invoked by engaging a minority of rule followers. Overall, we present a powerful tool for evaluating the contingency of regulatory compliance upon cultural, socioeconomic, institutional and physical conditions, and its susceptibility to change beyond thresholds. Managing these thresholds may help to avoid unsustainable groundwater development, reduce enforcement costs, better account for cultural diversity in transboundary aquifer management and increase community resilience to changes in regional climate. Although we focus on groundwater, our methods and findings apply broadly to other resource management issues.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Grid–group positions based on the WVS6 reveal the relative positions of nations within the space of possible societal responses to groundwater regulation.
Fig. 2: The Groundwater Commons Game.
Fig. 3: Deleterious effects and trade-offs in systems located below or near the tipping points.
Fig. 4: Rule followers have a strong positive influence on compliance and groundwater conservation targets.

References

  1. Aeschbach-Hertig, W. & Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 5, 853–861 (2012).

    CAS  Article  Google Scholar 

  2. Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Wat. Resour. Res. 51, 5217–5238 (2015).

    Article  Google Scholar 

  3. Farmer, J. D. & Foley, D. The economy needs agent-based modelling. Nature 460, 685–686 (2009).

    CAS  Article  PubMed  Google Scholar 

  4. Epstein, J. M. & Axtell, R. Growing Artificial Societies (MIT Press, Cambridge, 1996).

  5. Nowak, M. A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Axelrod, R. An evolutionary approach to norms. Am. Polit. Sci. Rev. 80, 1095–1111 (1986).

    Article  Google Scholar 

  7. Ostrom, E. Governing the Commons (Cambridge Univ. Press, Cambridge, 1990).

  8. Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).

    CAS  Article  PubMed  Google Scholar 

  9. Margat, J. & Van der Gun, J. Groundwater around the World (CRC Press, Boca Raton, 2013).

  10. Theesfeld, I. Institutional challenges for national groundwater governance: policies and issues. Ground Water 48, 131–142 (2010).

    CAS  Article  PubMed  Google Scholar 

  11. Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 14, 137–158 (2000).

    Article  Google Scholar 

  12. Mitchell, M., Curtis, A., Sharp, E. & Mendham, E. Directions for social research to underpin improved groundwater management. J. Hydrol. (Amst.) 448–449, 223–231 (2012).

    Article  Google Scholar 

  13. van Steenbergen, F. Promoting local management in groundwater. Hydrogeol. J. 14, 380–391 (2006).

    Article  Google Scholar 

  14. Epstein, J. M. Generative Social Science: Studies in Agent-based Computational Modeling (Princeton Univ. Press, Princeton, 2006).

  15. Smith, J. M. Evolution and the Theory of Games (Cambridge Univ. Press, Cambridge, 1982).

  16. Nowak, M. A. Why we help: far from being a nagging exception to the rule of evolution, cooperation has been one of its primary architects. Sci. Am. 307, 34–39 (2012).

    Article  PubMed  Google Scholar 

  17. Axelrod, R. M. The Complexity of Cooperation: Agent-based Models of Competition and Collaboration (Princeton Univ. Press, Princeton, 1997).

  18. Ostrom, E. Revisiting the commons: local lessons, global challenges. Science 284, 278–282 (1999).

    CAS  Article  PubMed  Google Scholar 

  19. Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).

    CAS  Article  PubMed  Google Scholar 

  20. Nowak, M. A. & Sigmund, K. Evolution of indirect reciprocity. Nature 437, 1291–1298 (2005).

    CAS  Article  PubMed  Google Scholar 

  21. Gigerenzer, G. & Selten, R. Bounded Rationality (MIT Press, Cambridge, 2002).

  22. Epstein, J. M. Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science (Princeton Univ. Press, Princeton, 2014).

  23. Larsen, L., Thomas, C., Eppinga, M. & Coulthard, T. Exploratory modeling: extracting causality from complexity. Eos (Washington DC) 95, 285–286 (2014).

    Google Scholar 

  24. Agrawal, A. Forests, governance, and sustainability: common property theory and its contributions. Int. J. Commons 1, 111–136 (2007).

    Article  Google Scholar 

  25. Castilla-Rho, J. C., Mariethoz, G., Rojas, R., Andersen, M. S. & Kelly, B. F. J. An agent-based platform for simulating complex human–aquifer interactions in managed groundwater systems. Environ. Model. Softw. 73, 305–323 (2015).

    Article  Google Scholar 

  26. Todd, P. M. & Gigerenzer, G. Ecological Rationality (Oxford Univ. Press, 2012).

  27. Alm, J., McClelland, G. H. & Schulze, W. D. Changing the social norm of tax compliance by voting. Kyklos 52, 141–171 (1999).

    Article  Google Scholar 

  28. Davis, J. S., Hecht, G. & Perkins, J. D. Social behaviors, enforcement, and tax compliance dynamics. Account. Rev. 78, 39–69 (2003).

    Article  Google Scholar 

  29. Bobek, D. D., Hageman, A. M. & Kelliher, C. F. Analyzing the role of social norms in tax compliance behavior. J. Bus. Ethics 115, 451–468 (2013).

    Article  Google Scholar 

  30. Thomas, A. S., Milfont, T. L. & Gavin, M. C. A new approach to identifying the drivers of regulation compliance using multivariate behavioural models. PLoS ONE 11, e0163868 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hønneland, G. A model of compliance in fisheries: theoretical foundations and practical application. Ocean Coast. Manage. 42, 699–716 (1999).

    Article  Google Scholar 

  32. Douglas, M. Natural Symbols: Explorations in Cosmology (Routledge, Abingdon, 2004).

  33. Verweij, M., Senior, T. J., Domínguez D., J. F. & Turner, R. Emotion, rationality, and decision-making: how to link affective and social neuroscience with social theory. Front. Neurosci. 9, 332 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chai, S.-K., Liu, M. & Kim, M.-S. Cultural comparisons of beliefs and values: applying the grid–group approach to the World Values Survey. Beliefs Values 1, 193–208 (2009).

    Article  Google Scholar 

  35. Holley, C. & Sinclair, D. Water Extraction in NSW: Stakeholder Views and Experience of Compliance and Enforcement (National Centre for Groundwater Research and Training Connected Waters Initiative Research Centre UNSW, Australia, 2015).

  36. Pahl-Wostl, C. A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Change 19, 354–365 (2009).

    Article  Google Scholar 

  37. Kidd, M., Feris, L., Murombo, T. & Iza, A. Water and the Law (Edward Elgar, Cheltenham, 2014).

  38. Holland, J. H. Genetic algorithms. Sci. Am. 267, 66–72 (1992).

    Article  Google Scholar 

  39. Walker, B. & Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function (Island Press, Washington, 2012).

  40. Ostrom, E. & Walker, J. Trust and Reciprocity (Russell Sage, New York, 2005).

  41. Moran, T. & Wendell, D. The Sustainable Groundwater Management Act of 2014: Challenges and Opportunities for Implementation. (Water in the West, Stanford Univ., 2014).

  42. Fehr, E. & Falk, A. Psychological foundations of incentives. Eur. Econ. Rev. 46, 687–724 (2002).

    Article  Google Scholar 

  43. Gutiérrez, N. L., Hilborn, R. & Defeo, O. Leadership, social capital and incentives promote successful fisheries. Nature 470, 386–389 (2011).

    Article  PubMed  Google Scholar 

  44. Holley, C. & Sinclair, D. Compliance and enforcement of water licences in NSW: limitations in law, policy and institutions. Australasian J. Natural Resources Law Policy 15, 149–190 (2012).

    Google Scholar 

  45. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  Article  PubMed  Google Scholar 

  46. Asch, S. E. Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychol. Monogr. 70, 1–70 (1956).

    Article  Google Scholar 

  47. Park, I.-U., Peacey, M. W. & Munafò, M. R. Modelling the effects of subjective and objective decision making in scientific peer review. Nature 506, 93–96 (2014).

    CAS  Article  PubMed  Google Scholar 

  48. Diamond, J. Collapse (Penguin, London, 2011).

  49. Haden, V. R., Niles, M. T., Lubell, M., Perlman, J. & Jackson, L. E. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change? PLoS ONE 7, e52882 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Fehr, E. & Rockenbach, B. Detrimental effects of sanctions on human altruism. Nature 422, 137–140 (2003).

    CAS  Article  PubMed  Google Scholar 

  51. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    CAS  Article  PubMed  Google Scholar 

  52. Poncela-Casasnovas, J. et al. Humans display a reduced set of consistent behavioral phenotypes in dyadic games. Sci. Adv. 2, e1600451 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schwartz, S. H. A theory of cultural values and some implications for work. Appl. Psychol. 48, 23–47 (1999).

    Article  Google Scholar 

  54. Hofstede, G. Culture’s Consequences (Sage, Thousand Oaks, 2003).

  55. Henrich, J. et al. Costly punishment across human societies. Science 312, 1767–1770 (2006).

    CAS  Article  PubMed  Google Scholar 

  56. Grendstad, G. A political cultural map of Europe. A survey approach. GeoJournal 47, 463–475 (1999).

    Article  Google Scholar 

  57. FAO. Global Diagnostic of Groundwater Governance—Thematic Papers http://www.fao.org/home/en/ (2016).

  58. Gotts, N. M. & Polhill, J. G. When and how to imitate your neighbours: lessons from and for FEARLUS. J. Artif. Soc. Soc. Simul. 12, 2 (2009).

    Google Scholar 

  59. Babbie, R. The Basics of Social Research (Cengage Learning, Belmont, 2010).

  60. Jalota, S. K., Sood, A., Vitale, J. D. & Srinivasan, R. Simulated crop yields response to irrigation water and economic analysis. Agron. J. 99, 1073–1084 (2007).

    Article  Google Scholar 

  61. Singh, K. B., Jalota, S. K. & Sharma, B. D. Effect of continuous rice–wheat rotation on soil properties from four agro‐ecosystems of Indian Punjab. Commun. Soil Sci. Plant Anal. 40, 2945–2958 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from CSIRO Land & Water, and D. Sinclair for his role in the design of empirical studies in the Murray–Darling Basin. We also acknowledge the participation of 672 anonymous Australian farmers, and the WVS interviewees who made this research possible. The Australian Research Council and the National Water Commission (through the NCGRT) funded part of this research through an ARC Linkage Grant with DPI Water (LP130100967) and an ARC DECRA (DE140101216). DPI Water provided institutional support, provision of mailing databases, testing of research questions with relevant DPI Water divisions (monitoring, regulation, education), and assistance with consultation with Members of the NSW Irrigators’ Council and other industry associations (for example, NSW farmers) who were also consulted in the development of the survey questions. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.C.C.-R., R.R. and G.M. conceived the research ideas and designed the study; C.H. conducted and analysed the Murray–Darling Basin water license surveys; J.C.C.-R. implemented the model, performed the computational experiments, designed figures and analysed the World Values Survey data. J.C.C.-R. and R.R. wrote the manuscript. All authors contributed to the analysis, interpretation, and editing of the manuscript.

Corresponding authors

Correspondence to Juan Carlos Castilla-Rho or Rodrigo Rojas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–3, Supplementary Discussion, Supplementary Methods, Supplementary References 1–42.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castilla-Rho, J.C., Rojas, R., Andersen, M.S. et al. Social tipping points in global groundwater management. Nat Hum Behav 1, 640–649 (2017). https://doi.org/10.1038/s41562-017-0181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-017-0181-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing