Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Perceptual confidence neglects decision-incongruent evidence in the brain

Abstract

Our perceptual experiences are accompanied by a subjective sense of certainty. These confidence judgements typically correlate meaningfully with the probability that the relevant decision is correct1,2,3,4,5,6, bolstering prevailing opinion that both perceptual decisions and confidence optimally reflect the probability of having made a correct decision6,7,8,9,10,11,12,13. However, recent behavioural reports suggest that confidence computations overemphasize information supporting a decision, while selectively down-weighting evidence for other possible choices14,15,16,17,18,19. This view remains controversial, and supporting neurobiological evidence has been lacking. Here we use intracranial electrophysiological recordings in humans together with machine-learning techniques to demonstrate that perceptual decisions and confidence rely on spatiotemporally separable neural representations in a face/house discrimination task. We then use normative computational models to show that confidence relies excessively on evidence supporting a decision (for example, face evidence for a ‘face’ decision), even while decisions themselves reflect the optimal balance of all evidence (for example, both face and house evidence). Thus, confidence may not reflect a readout of the probability of being correct; instead, observers may sacrifice optimality in favour of self-consistency20 in the face of limited neural and computational resources. Although seemingly suboptimal, this strategy may reflect the inference problem that perceptual systems are evolutionarily optimized to solve.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioural task and results.
Figure 2: Spatiotemporal dissociation between ‘decision’ and ‘confidence’ decoding.
Figure 3: Choice probability analyses show that confidence computations were insensitive to decision-incongruent evidence.
Figure 4: Violations of the normative model for confidence but not accuracy.

Similar content being viewed by others

References

  1. Charles, L., King, J.-R. & Dehaene, S. Decoding the dynamics of action, intention, and error detection for conscious and subliminal stimuli. J. Neurosci. 34, 1158–1170 (2014).

    Google Scholar 

  2. Fleming, S. M., Huijgen, J. & Dolan, R. J. Prefrontal contributions to metacognition in perceptual decision making. J. Neurosci. 32, 6117–6125 (2012).

    Google Scholar 

  3. Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. & Rees, G. Relating introspective accuracy to individual differences in brain structure. Science 329, 1541–1543 (2010).

    Google Scholar 

  4. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    Google Scholar 

  5. Kiani, R., Corthell, L. & Shadlen, M. N. Choice certainty is informed by both evidence and decision time. Neuron 84, 1329–1342 (2014).

    Google Scholar 

  6. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

    Google Scholar 

  7. Fetsch, C. R., Kiani, R., Newsome, W. T. & Shadlen, M. N. Effects of cortical microstimulation on confidence in a perceptual decision. Neuron 83, 797–804 (2014).

    Google Scholar 

  8. Pouget, A., Drugowitsch, J. & Kepecs, A. Confidence and certainty: distinct probabilistic quantities for different goals. Nat. Neurosci. 19, 366–374 (2016).

    Google Scholar 

  9. Kepecs, A. & Mainen, Z. F. A computational framework for the study of confidence in humans and animals. Phil. Trans. R. Soc. B 367, 1322–1337 (2012).

    Google Scholar 

  10. Meyniel, F., Schlunegger, D. & Dehaene, S. The sense of confidence during probabilistic learning: a normative account. PLoS Comput. Biol. 11, e1004305 (2015).

    Google Scholar 

  11. Sanders, J. I., Hangya, B. & Kepecs, A. Signatures of a statistical computation in the human sense of confidence. Neuron 90, 499–506 (2016).

    Google Scholar 

  12. Meyniel, F., Sigman, M. & Mainen, Z. F. Confidence as Bayesian probability: from neural origins to behavior. Neuron 88, 78–92 (2015).

    Google Scholar 

  13. Gherman, S. & Philiastides, M. G. Neural representations of confidence emerge from the process of decision formation during perceptual choices. Neuroimage 106, 134–143 (2015).

    Google Scholar 

  14. van den Berg, R. et al. A common mechanism underlies changes of mind about decisions and confidence. Elife 5, e12192 (2015).

    Google Scholar 

  15. Koizumi, A., Maniscalco, B. & Lau, H. Does perceptual confidence facilitate cognitive control? Atten. Percept. Psychophys. 77, 1295–1306 (2015).

    Google Scholar 

  16. Maniscalco, B., Peters, M. A. K. & Lau, H. Heuristic use of perceptual evidence leads to dissociation between performance and metacognitive sensitivity. Atten. Percept. Psychophys. 78, 923–937 (2016).

    Google Scholar 

  17. Samaha, J., Barrett, J. J., Sheldon, A. D., Larocque, J. J. & Postle, B. R. Dissociating perceptual confidence from discrimination accuracy reveals no influence of metacognitive awareness on working memory. Front. Psychol. 7, 851 (2016).

    Google Scholar 

  18. Zylberberg, A., Barttfeld, P. & Sigman, M. The construction of confidence in a perceptual decision. Front. Integr. Neurosci. 6, 79–79 (2012).

    Google Scholar 

  19. Aitchison, L., Bang, D., Bahrami, B. & Latham, P. E. Doubly Bayesian analysis of confidence in perceptual decision-making. PLoS Comput. Biol. 11, e1004519 (2015).

    Google Scholar 

  20. Stocker, A. A. & Simoncelli, E. P. A Bayesian model of conditioned perception . Adv. Neural Inf. Process. Syst. 20, 1409–1416 (2008).

    Google Scholar 

  21. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200?Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28, 11526–11536 (2008).

    Google Scholar 

  22. Ray, S. & Maunsell, J. H. R. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex. PLoS Biol. 9, e1000610 (2011).

    Google Scholar 

  23. Winawer, J. et al. Asynchronous broadband signals are the principal source of the bold response in human visual cortex. Curr. Biol. 23, 1145–1153 (2013).

    Google Scholar 

  24. Mukamel, R. et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309, 951–954 (2005).

    Google Scholar 

  25. Kunii, N., Kamada, K., Ota, T., Kawai, K. & Saito, N. Characteristic profiles of high gamma activity and blood oxygenation level-dependent responses in various language areas. Neuroimage 65, 242–249 (2013).

    Google Scholar 

  26. Esposito, F. et al. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses. Neuroimage 66, 457–468 (2013).

    Google Scholar 

  27. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Google Scholar 

  28. Crone, N. E., Sinai, A. & Korzeniewska, A. High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog. Brain Res. 159, 275–295 (2006).

  29. Crone, N. E., Boatman, D., Gordon, B. & Hao, L. Induced electrocorticographic gamma activity during auditory perception. (Brazier Award-winning article, 2001). Clin. Neurophysiol. 112, 565–582 (2001).

    Google Scholar 

  30. Hermes, D., Miller, K. J., Wandell, B. A. & Winawer, J. Stimulus dependence of gamma oscillations in human visual cortex. Cereb. Cortex 25, 2951–2959 (2015).

    Google Scholar 

  31. Hipp, J. F., Engel, A. K. & Siegel, M. Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69, 387–396 (2011).

    Google Scholar 

  32. Laczó, B., Antal, A., Niebergall, R., Treue, S. & Paulus, W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 5, 484–491 (2012).

    Google Scholar 

  33. Davidesco, I. et al. Exemplar selectivity reflects perceptual similarities in the human fusiform cortex. Cereb. Cortex 24, 1879–1893 (2014).

    Google Scholar 

  34. Privman, E. et al. Antagonistic relationship between gamma power and visual evoked potentials revealed in human visual cortex. Cereb. Cortex 21, 616–624 (2011).

    Google Scholar 

  35. Shum, J. et al. A brain area for visual numerals. J. Neurosci. 33, 6709–6715 (2013).

    Google Scholar 

  36. Dastjerdi, M., Ozker, M., Foster, B. L., Rangarajan, V. & Parvizi, J. Numerical processing in the human parietal cortex during experimental and natural conditions. Nat. Commun. 4, 2528 (2013).

    Google Scholar 

  37. Kubánek, J., Miller, K. J., Ojemann, J. G., Wolpaw, J. R. & Schalk, G. Decoding flexion of individual fingers using electrocorticographic signals in humans. J. Neural Eng. 6, 066001 (2009).

    Google Scholar 

  38. Yu, S., Pleskac, T. J. & Zeigenfuse, M. D. Dynamics of postdecisional processing of confidence. J. Exp. Psychol. Gen. 144, 489–510 (2015).

    Google Scholar 

  39. Pleskac, T. J. & Busemeyer, J. R. Two-stage dynamic signal detection: a theory of choice, decision time, and confidence. Psychol. Rev. 117, 864–901 (2010).

    Google Scholar 

  40. Maniscalco, B. & Lau, H. The signal processing architecture underlying subjective reports of sensory awareness. Neurosci. Conscious. 2016, niw002 (2016).

    Google Scholar 

  41. Chen, J., Feng, T., Shi, J., Liu, L. & Li, H. Neural representation of decision confidence. Behav. Brain Res. 245, 50–57 (2013).

    Google Scholar 

  42. Heereman, J., Walter, H. & Heekeren, H. R. A task-independent neural representation of subjective certainty in visual perception. Front. Hum. Neurosci. 9, 551 (2015).

    Google Scholar 

  43. McCurdy, L. Y. et al. Anatomical coupling between distinct metacognitive systems for memory and visual perception. J. Neurosci. 33, 1897–1906 (2013).

    Google Scholar 

  44. Schwiedrzik, C. M., Singer, W. & Melloni, L. Subjective and objective learning effects dissociate in space and in time. Proc. Natl Acad. Sci. USA 108, 4506–4511 (2011).

    Google Scholar 

  45. Li, Q., Hill, Z. & He, B. J. Spatiotemporal dissociation of brain activity underlying subjective awareness, objective performance and confidence. J. Neurosci. 34, 4382–4395 (2014).

    Google Scholar 

  46. Middlebrooks, P. G. & Sommer, M. A. Neuronal correlates of metacognition in primate frontal cortex. Neuron 75, 517–530 (2012).

    Google Scholar 

  47. Fleming, S. M. & Dolan, R. J. The neural basis of metacognitive ability. Phil. Trans. R. Soc. B 367, 1338–1349 (2012).

    Google Scholar 

  48. Rounis, E., Maniscalco, B., Rothwell, J. C., Passingham, R. E. & Lau, H. Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness. Cogn. Neurosci. 1, 165–175 (2010).

    Google Scholar 

  49. Lau, H. & Passingham, R. E. Relative blindsight in normal observers and the neural correlate of visual consciousness. Proc. Natl Acad. Sci. USA 103, 18763–18768 (2006).

    Google Scholar 

  50. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S. & Movshon, J. A. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13, 87–100 (1996).

    Google Scholar 

  51. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Wiley, 1966).

    Google Scholar 

  52. Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide (Taylor & Francis, 2004).

    Google Scholar 

  53. King, J.-R. & Dehaene, S. Characterizing the dynamics of mental representations: the temporal generalization method. Trends Cogn. Sci. 18, 203–210 (2014).

    Google Scholar 

  54. Peters, M. A. K. & Lau, H. Human observers have optimal introspective access to perceptual processes even for visually masked stimuli. Elife 4, e09651 (2015).

    Google Scholar 

  55. Vlassova, A., Donkin, C. & Pearson, J. Unconscious information changes decision accuracy but not confidence. Proc. Natl Acad. Sci. USA 111, 16214–16218 (2014).

    Google Scholar 

  56. Lak, A. et al. Orbitofrontal cortex is required for optimal waiting based on decision confidence. Neuron 84, 190–201 (2014).

    Google Scholar 

  57. Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nat. Neurosci. 16, 749–755 (2013).

    Google Scholar 

  58. Zylberberg, A., Roelfsema, P. R. & Sigman, M. Variance misperception explains illusions of confidence in simple perceptual decisions. Conscious. Cogn. 27C, 246–253 (2014).

    Google Scholar 

  59. Rahnev, D., Maniscalco, B., Luber, B., Lau, H. & Lisanby, S. H. Direct injection of noise to the visual cortex decreases accuracy but increases decision confidence. J. Neurophysiol. 107, 1556–1563 (2012).

    Google Scholar 

  60. Rahnev, D. et al. Attention induces conservative subjective biases in visual perception. Nat. Neurosci. 14, 1513–1515 (2011).

    Google Scholar 

  61. Peters, M.A.K. et al. Transcranial magnetic stimulation to visual cortex induces suboptimal introspection. Cortex 93, 119–132 (2017).

    Google Scholar 

  62. Beck, J. M., Ma, W. J., Latham, P. E. & Pouget, A. Probabilistic population codes and the exponential family of distributions. Prog. Brain Res. 165, 509–519 (2007).

    Google Scholar 

  63. Beck, J. M. et al. Probabilistic population codes for Bayesian decision making. Neuron 60, 1142–1152 (2008).

    Google Scholar 

  64. Ma, W. J., Beck, J. M., Latham, P. & Pouget, A. Bayesian inference with probabilistic population codes. Nat. Neurosci. 9, 1432–1438 (2006).

    Google Scholar 

  65. Fiser, J., Berkes, P., Orbán, G. & Lengyel, M. Statistically optimal perception and learning: from behavior to neural representations. Trends Cogn. Sci. 14, 119–130 (2010).

    Google Scholar 

  66. Ma, W. J., Beck, J. M. & Pouget, A. Spiking networks for Bayesian inference and choice. Curr. Opin. Neurobiol. 18, 217–222 (2008).

    Google Scholar 

  67. Berkes, P., Orban, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011).

    Google Scholar 

  68. Maniscalco, B. & Lau, H. A signal detection theoretic approach for estimating metacognitive sensitivity from confidence ratings. Conscious. Cogn. 21, 422–430 (2012).

    Google Scholar 

  69. Fleming, S. M. & Lau, H. How to measure metacognition. Front. Hum. Neurosci. 8, 443 (2014).

    Google Scholar 

  70. Wei, X. & Stocker, A. Efficient coding provides a direct link between prior and likelihood in perceptual Bayesian inference. Adv. Neural Inf. Process. Syst. 25, 1313–1321 (2012).

    Google Scholar 

  71. Fleming, S. M., Maloney, L. T. & Daw, N. D. The irrationality of categorical perception. J. Neurosci. 33, 19060–19070 (2013).

    Google Scholar 

  72. Jazayeri, M. & Movshon, J. A. A new perceptual illusion reveals mechanisms of sensory decoding. Nature 446, 912–915 (2007).

    Google Scholar 

  73. Luu, L. & Stocker, A. A. Choice-induced biases in perception. Preprint at http://biorxiv.org/content/early/2016/04/01/043224(2016).

  74. Rutishauser, U. et al. Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nat. Neurosci. 18, 1041–1050 (2015).

    Google Scholar 

  75. Zawadzka, K., Higham, P. A. & Hanczakowski, M. Confidence in forced-choice recognition: what underlies the ratings? J. Exp. Psychol. Learn. Mem. Cogn. 43, 552–564 (2016).

    Google Scholar 

  76. James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning, with Applications in R (Springer, 2015).

    Google Scholar 

Download references

Acknowledgements

This work is supported by funding from the Templeton Foundation (grant 21569 to H.L.) and the US National Institute of Neurological Disorders and Stroke (NIH R01 NS088628 to H.L.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank U. Maoz for discussion on some technical issues regarding analysis.

Author information

Authors and Affiliations

Authors

Contributions

M.A.K.P. and H.L. together developed the key theoretical ideas behind the project, analysed the data and wrote the paper. H.L., T.T., E.H. and M.D. designed the behavioral paradigm and initiated project planning. T.T. and M.D. were primarily responsible for data collection. B.M., Y.D.K. and M.D. contributed to data analysis. W.D., R.K. and O.D. contributed to data collection and overcoming logistical challenges. T.T. oversaw the logistical issues and planning involved in the entire project.

Corresponding author

Correspondence to Megan A. K. Peters.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Results, Supplementary Figures 1–13, Supplementary Tables 1–8, and Supplementary Notes.

Supplementary Dataset

MNI coordinates of all electrodes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, M., Thesen, T., Ko, Y. et al. Perceptual confidence neglects decision-incongruent evidence in the brain. Nat Hum Behav 1, 0139 (2017). https://doi.org/10.1038/s41562-017-0139

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-017-0139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing