Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dual enhancement mechanisms for overnight motor memory consolidation

Abstract

Our brains are constantly processing past events1. These offline processes consolidate memories, leading in the case of motor skill memories to an enhancement in performance between training sessions. A similar magnitude of enhancement develops over a night of sleep following an implicit task, in which a sequence of movements is acquired unintentionally, or following an explicit task, in which the same sequence is acquired intentionally2. What remains poorly understood, however, is whether these similar offline improvements are supported by similar circuits, or through distinct circuits. We set out to distinguish between these possibilities by applying transcranial magnetic stimulation over the primary motor cortex (M1) or the inferior parietal lobule (IPL) immediately after learning in either the explicit or implicit task. These brain areas have both been implicated in encoding aspects of a motor sequence and subsequently supporting offline improvements over sleep35. Here we show that offline improvements following the explicit task are dependent on a circuit that includes M1 but not IPL. In contrast, offline improvements following the implicit task are dependent on a circuit that includes IPL but not M1. Our work establishes the critical contribution made by M1 and IPL circuits to offline memory processing, and reveals that distinct circuits support similar offline improvements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: A double dissociation between site of stimulation and subsequent offline improvements in different learning tasks.
Figure 3: Response time changes during learning in the different tasks.

Similar content being viewed by others

References

  1. Robertson, E. M. From creation to consolidation: a novel framework for memory processing. PLoS Biol. 7, e19 (2009).

    Google Scholar 

  2. Robertson, E. M., Pascual-Leone, A. & Press, D. Z. Awareness modifies the skill-learning benefits of sleep. Curr. Biol. 14, 208–212 (2004).

    Google Scholar 

  3. Grafton, S. T., Hazeltine, E. & Ivry, R. B. Abstract and effector-specific representations of motor sequences identified with PET. J. Neurosci. 18, 9420–9428 (1998).

    Google Scholar 

  4. Huber, R., Ghilardi, M. F., Massimini, M. & Tononi, G. Local sleep and learning. Nature 430, 78–81 (2004).

    Google Scholar 

  5. Ramanathan, D. S., Gulati, T. & Ganguly, K. Sleep-dependent reactivation of ensembles in motor cortex promotes skill consolidation. PLoS Biol. 13, e1002263 (2015).

    Google Scholar 

  6. Robertson, E. M., Pascual-Leone, A. & Miall, R. C. Current concepts in procedural consolidation. Nat. Rev. Neurosci. 5, 576–582 (2004).

    Google Scholar 

  7. Walker, M. P., Stickgold, R., Alsop, D., Gaab, N. & Schlaug, G. Sleep-dependent motor memory plasticity in the human brain. Neuroscience 133, 911–917 (2005).

    Google Scholar 

  8. Walker, M. P. A refined model of sleep and the time course of memory formation. Behav. Brain Sci. 28, 51–104 (2005).

    Google Scholar 

  9. Diekelmann, S. & Born, J. The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 (2010).

    Google Scholar 

  10. Hikosaka, O., Nakamura, K., Sakai, K. & Nakahara, H. Central mechanisms of motor skill learning. Curr. Opin. Neurobiol. 12, 217–222 (2002).

    Google Scholar 

  11. Dayan, E. & Cohen, L. G. Neuroplasticity subserving motor skill learning. Neuron 72, 443–454 (2011).

    Google Scholar 

  12. Albert, N. B., Robertson, E. M. & Miall, R. C. The resting human brain and motor learning. Curr. Biol. 19, 1023–1027 (2009).

    Google Scholar 

  13. Tambini, A., Ketz, N. & Davachi, L. Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65, 280–290 (2010).

    Google Scholar 

  14. Genzel, L. & Robertson, E. M. To replay, perchance to consolidate. PLoS Biol. 13, e1002285 (2015).

    Google Scholar 

  15. Nishida, M. & Walker, M. P. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PloS One 2, e341 (2007).

    Google Scholar 

  16. Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A. & Stickgold, R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35, 205–211 (2002).

    Google Scholar 

  17. Fischer, S., Hallschmid, M., Elsner, A. L. & Born, J. Sleep forms memory for finger skills. Proc. Natl Acad. Sci. USA 99, 11987–11991 (2002).

    Google Scholar 

  18. Cohen, D. A., Pascual-Leone, A., Press, D. Z. & Robertson, E. M. Off-line learning of motor skill memory: a double dissociation of goal and movement. Proc. Natl Acad. Sci. USA 102, 18237–18241 (2005).

    Google Scholar 

  19. Press, D. Z., Casement, M. D., Pascual-Leone, A. & Robertson, E. M. The time course of off-line motor sequence learning. Brain Res. Cogn. Brain Res. 25, 375–378 (2005).

    Google Scholar 

  20. Cohen, D. A. & Robertson, E. M. Motor sequence consolidation: constrained by critical time windows or competing components. Exp. Brain Res. 177, 440–446 (2007).

    Google Scholar 

  21. Brown, R. M. & Robertson, E. M. Off-line processing: reciprocal interactions between declarative and procedural memories. J. Neurosci. 27, 10468–10475 (2007).

    Google Scholar 

  22. Spencer, R. M., Sunm, M. & Ivry, R. B. Sleep-dependent consolidation of contextual learning. Curr. Biol. 16, 1001–1005 (2006).

    Google Scholar 

  23. Galea, J. M., Albert, N. B., Ditye, T. & Miall, R. C. Disruption of the dorsolateral prefrontal cortex facilitates the consolidation of procedural skills. J. Cogn. Neurosci. 22, 1158–1164 (2010).

    Google Scholar 

  24. Cohen, D. A. & Robertson, E. M. Preventing interference between different memory tasks. Nat. Neurosci. 14, 953–955 (2011).

    Google Scholar 

  25. Mosha, N. & Robertson, E. M. Unstable memories create a high-level representation that enables learning transfer. Curr. Biol. 26, 100–105 (2016).

    Google Scholar 

  26. Robertson, E. M. New insights in human memory interference and consolidation. Curr. Biol. 22, R66–R71 (2012).

    Google Scholar 

  27. Chen, R. et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48, 1398–1403 (1997).

    Google Scholar 

  28. Kosslyn, S. M. et al. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999).

    Google Scholar 

  29. Mottaghy, F. M., Gangitano, M., Sparing, R., Krause, B. J. & Pascual-Leone, A. Segregation of areas related to visual working memory in the prefrontal cortex revealed by rTMS. Cereb. Cortex 12, 369–375 (2002).

    Google Scholar 

  30. Robertson, E. M., Theoret, H. & Pascual-Leone, A. Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J. Cogn. Neurosci. 15, 948–960 (2003).

    Google Scholar 

  31. Marshall, L., Molle, M., Hallschmid, M. & Born, J. Transcranial direct current stimulation during sleep improves declarative memory. J. Neurosci. 24, 9985–9992 (2004).

    Google Scholar 

  32. Marshall, L., Helgadottir, H., Molle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613 (2006).

    Google Scholar 

  33. Huber, R. et al. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep. PLoS One 2, e276 (2007).

    Google Scholar 

  34. Hotermans, C., Peigneux, P., Maertens de Noordhout, A., Moonen, G. & Maquet, P. Early boost and slow consolidation in motor skill learning. Learn. Mem. 13, 580–583 (2006).

    Google Scholar 

  35. Hotermans, C., Peigneux, P., de Noordhout, A. M., Moonen, G. & Maquet, P. Repetitive transcranial magnetic stimulation over the primary motor cortex disrupts early boost but not delayed gains in performance in motor sequence learning. Eur. J. Neurosci. 28, 1216–1221 (2008).

    Google Scholar 

  36. Doyon, J. et al. Contribution of night and day sleep vs. simple passage of time to the consolidation of motor sequence and visuomotor adaptation learning. Exp. Brain Res. 195, 15–26 (2009).

    Google Scholar 

  37. Brown, R. M. & Robertson, E. M. Inducing motor skill improvements with a declarative task. Nat. Neurosci. 10, 148–149 (2007).

    Google Scholar 

  38. Tunovic, S., Press, D. Z. & Robertson, E. M. A physiological signal that prevents motor skill improvements during consolidation. J. Neurosci. 34, 5302–5310 (2014).

    Google Scholar 

  39. Breton, J. & Robertson, E. M. Flipping the switch: mechanisms that regulate memory consolidation. Trends Cogn. Sci. 18, 629–634 (2014).

    Google Scholar 

  40. Fischer, S., Nitschke, M. F., Melchert, U. H., Erdmann, C. & Born, J. Motor memory consolidation in sleep shapes more effective neuronal representations. J. Neuroscience 25, 11248–11255 (2005).

    Google Scholar 

  41. Friston, K. J. & Price, C. J. Degeneracy and redundancy in cognitive anatomy. Trends Cogn. Sci. 7, 151–152 (2003).

    Google Scholar 

  42. Walker, M. P. & Stickgold, R. Sleep-dependent learning and memory consolidation. Neuron 44, 121–133 (2004).

    Google Scholar 

  43. Oldfield, R. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    Google Scholar 

  44. Robertson, E. M., Press, D. Z. & Pascual-Leone, A. Off-line learning and the primary motor cortex. J. Neurosci. 25, 6372–6378 (2005).

    Google Scholar 

  45. Nissen, M. J. & Bullemer, P. Attentional requirements of learning: evidence from performance measures. Cogn. Psychol. 19, 1–32 (1987).

    Google Scholar 

  46. Robertson, E. M. The serial reaction time task: implicit motor skill learning? J. Neurosci. 27, 10073–10075 (2007).

    Google Scholar 

  47. Dominey, P. F., Lelekov, T., Ventre-Dominey, J. & Jeannerod, M. Dissociable processes for learning the surface structure and abstract structure of sensorimotor sequences. J. Cogn. Neurosci. 10, 734–751 (1998).

    Google Scholar 

  48. Willingham, D. B., Salidis, J. & Gabrieli, J. D. Direct comparison of neural systems mediating conscious and unconscious skill learning. J. Neurophysiol. 88, 1451–1460 (2002).

    Google Scholar 

  49. Hauptmann, B., Reinhart, E., Brandt, S. A. & Karni, A. The predictive value of the leveling off of within session performance for procedural memory consolidation. Brain Res. Cogn. Brain Res. 24, 181–189 (2005).

    Google Scholar 

  50. Wassermann, E. M. et al. Locating the motor cortex on the MRI with transcranial magnetic stimulation and PET. Neuroimage 3, 1–9 (1996).

    Google Scholar 

  51. Kammer, T., Beck, S., Thielscher, A., Laubis-Herrmann, U. & Topka, H. Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin. Neurophysiol. 112, 250–258 (2001).

    Google Scholar 

  52. Silber, M. H. et al. The visual scoring of sleep in adults. J. Clin. Sleep Med. 3, 121–131 (2007).

    Google Scholar 

  53. Rechtschaffen, A. & Kales, A. Manual of Standardized Terminology, Techniques and Scoring Systems for Sleep Stages of Human Subjects (UCLA Brain Information Service, 1968).

    Google Scholar 

  54. Willingham, D. B., Nissen, M. J. & Bullemer, P. On the development of procedural knowledge. J. Exp. Psychol. Learn. Mem. Cogn. 15, 1047–1060 (1989).

    Google Scholar 

  55. Eysenck, H. J. & Frith, C. D. Reminiscence, Motivation, and Personality: A Case Study in Experimental Psychology (Plenum, 1977).

    Google Scholar 

  56. Boyd, L. A. & Winstein, C. J. Implicit motor-sequence learning in humans following unilateral stroke: the impact of practice and explicit knowledge. Neurosci. Lett. 298, 65–69 (2001).

    Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (Division of Behavioral and Cognitive Sciences, BCS, 0921177; E.M.R.) and the National Institutes of Health (R01 NS051446-03S1; E.M.R.) who funded this work. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We also thank S. Tunovic for his assistance with many of the experiments, J. Saletin for helping with some aspects of the sleep analysis, and J. Mullington and M. Haack for helping with both the recording and scoring of participants’ sleep.

Author information

Authors and Affiliations

Authors

Contributions

J.B. performed the experiments and analysed the data. E.M.R designed the study, performed the experiments, analysed the data, interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Edwin M. Robertson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breton, J., Robertson, E. Dual enhancement mechanisms for overnight motor memory consolidation. Nat Hum Behav 1, 0111 (2017). https://doi.org/10.1038/s41562-017-0111

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-017-0111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing