Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arousal-related adjustments of perceptual biases optimize perception in dynamic environments

Abstract

Prior expectations can be used to improve perceptual judgments about ambiguous stimuli. However, little is known about whether and how these improvements are maintained in dynamic environments in which the quality of appropriate priors changes from one stimulus to the next. Here we use a sound-localization task to show that changes in stimulus predictability lead to arousal-mediated adjustments in the magnitude of prior-driven biases that optimize perceptual judgments about each stimulus. These adjustments depend on task-dependent changes in the relevance and reliability of prior expectations, which subjects update using both normative and idiosyncratic principles. The resulting variations in biases across task conditions and individuals are reflected in modulations of pupil diameter, such that larger stimulus-evoked pupil responses correspond to smaller biases. These results suggest a notable role for the arousal system in adjusting the strength of perceptual biases with respect to inferred environmental dynamics to optimize perceptual judgements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic sound-localization task.
Figure 2: Overall prediction and estimation performance.
Figure 3: Effects of task dynamics on performance.
Figure 4: Effects of task dynamics on perceptual bias.
Figure 5: Individual differences in perceptual bias.
Figure 6: Dynamic modulation of perceptual bias by normative and non-normative factors.
Figure 7: Pupil diameter reflects dynamic modulations of perceptual bias within individual subjects.
Figure 8: Pupil diameter reflects individual differences in perceptual biases.

Similar content being viewed by others

References

  1. Bar, M. Visual objects in context. Nat. Rev. Neurosci. 5, 617–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Edwards, W. Optimal strategies for seeking information: models for statistics, choice reaction times, and human information processing. J. Math. Psychol. 2, 312–329 (1965).

    Article  Google Scholar 

  3. Link, S. W. & Heath, R. A. A sequential theory of psychological discrimination. Psychometrika 40, 77–105 (1975).

    Article  Google Scholar 

  4. Maddox, W. T. & Bohil, C. J. Base-rate and payoff effects in multidimensional perceptual categorization. J. Exp. Psychol. Learn Mem. Cogn. 24, 1459–1482 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Seriès, P. & Seitz, A. R. Learning what to expect (in visual perception). Front. Hum. Neurosci. 7, 668 (2013).

    Article  PubMed  Google Scholar 

  6. Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).

    Article  PubMed  Google Scholar 

  7. Fischer, B. J. & Peña, J. L. Owl’s behavior and neural representation predicted by Bayesian inference. Nat. Neurosci. 14, 1061–1066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knill, D. C. & Pouget, A. The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Stocker, A. A. & Simoncelli, E. P. Noise characteristics and prior expectations in human visual speed perception. Nat. Neurosci. 9, 578–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Nassar, M. R., Wilson, R. C., Heasly, B. & Gold, J. I. An approximately Bayesian delta-rule model explains the dynamics of belief updating in a changing environment. J. Neurosci. 30, 12366–12378 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. Nat. Neurosci. 15, 1040–1046 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knill, D. C & Richards, W. Perception as Bayesian Inference (Cambridge Univ. Press, 1996).

    Book  Google Scholar 

  13. Wilson, R. C., Nassar, M. R. & Gold, J. I. Bayesian online learning of the hazard rate in change-point problems. Neural Comput. 22, 2452–2476 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bouret, S. & Sara, S. J. Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 28, 574–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Ullsperger, M., Harsay, H. A., Wessel, J. R. & Ridderinkhof, K. R. Conscious perception of errors and its relation to the anterior insula. Brain Struct. Funct. 214, 629–643 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harley, C. W. Norepinephrine and the dentate gyrus. Prog. Brain Res. 163, 299–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Joshi, S., Li, Y., Kalwani, R. M. & Gold, J. I. Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Adams, W. J., Graf, E. W. & Ernst, M. O. Experience can change the ‘light-from-above’ prior. Nat. Neurosci. 7, 1057–1058 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Berniker, M., Voss, M. & Kording, K. Learning priors for Bayesian computations in the nervous system. PLoS ONE 5, e12686 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Burge, J., Ernst, M. O. & Banks, M. S. The statistical determinants of adaptation rate in human reaching. J. Vis. 8, 20 (2008).

    Article  Google Scholar 

  23. Tassinari, H. & Hudson, T. E. & Landy, M. S. Combining priors and noisy visual cues in a rapid pointing task. J. Neurosci. 26, 10154–10163 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stanovich, K. E. & West, R. F. Individual differences in reasoning: implications for the rationality debate? Behav. Brain Sci. 23, 645–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Behrens, T. E. J., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. S. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Wilson, R. C., Nassar, M. R. & Gold, J. I. A mixture of delta-rules approximation to bayesian inference in change-point problems. PLoS Comput. Biol. 9, e1003150 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Preuschoff, K. Pupil dilation signals surprise: evidence for noradrenaline’s role in decision making. Front. Neurosci. 5, 115 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tenenbaum, J. B., Kemp, C. & Griffiths, T. L. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Vapnik, V. The Nature of Statistical Learning Theory (Springer Science & Business Media, 2013).

    Google Scholar 

  30. Adams, R. P. & MacKay, D. J. C. Bayesian online changepoint detection. Preprint at https://arxiv.org/abs/0710.3742 (2007).

  31. Mathys, C . Daunizeau, J ., Friston, K. J. & Stephan, K. E . A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci. 5, 39 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Payzan-LeNestour, E. & Bossaerts, P. Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings. PLoS Comput. Biol. 7, e1001048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Preuschoff, K. & Bossaerts, P. Adding prediction risk to the theory of reward learning. Ann. NY Acad. Sci. 1104, 135–146 (2007).

    Article  PubMed  Google Scholar 

  34. Gold, J. I., Law, C. T., Connolly, P. & Bennur, S. The relative influences of priors and sensory evidence on an oculomotor decision variable during perceptual learning. J. Neurophysiol. 100, 2653–2668 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jones, M., Curran, T., Mozer, M. C. & Wilder, M. H. Sequential effects in response time reveal learning mechanisms and event representations. Psychol. Rev. 120, 628–666 (2013).

    Article  PubMed  Google Scholar 

  36. Zhang, S ., Huang, H & Angela, J. Y. Sequential effects: a Bayesian analysis of prior bias on reaction time and behavioral choice. In Proc. 36th Annual Conference of the Cognitive Science Society (eds Bello, P., Guarini, M., McShane, M. & Scassellati B.) (CogSci, 2014).

  37. de Gee, J. W., Knapen, T. & Donner, T. H. Decision-related pupil dilation reflects upcoming choice and individual bias. Proc. Natl Acad. Sci. USA 111, E618–E625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Urai, A. E., Braun, A. & Donner, T. H. Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nat. Commun. 8, 14637 (2017).

    Article  PubMed  Google Scholar 

  39. Frank, M. J. & Badre, D. Mechanisms of hierarchical reinforcement learning in corticostriatal circuits 1: computational analysis. Cereb. Cortex 22, 509–526 (2012).

    Article  PubMed  Google Scholar 

  40. Collins, A. G. E. & Frank, M. J. Cognitive control over learning: creating, clustering, and generalizing task-set structure. Psychol. Rev. 120, 190–229 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Eldar, E., Cohen, J. D. & Niv, Y. The effects of neural gain on attention and learning. Nat. Neurosci. 16, 1146–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eldar, E., Niv, Y. & Cohen, J. D. Do you see the forest or the tree? Neural gain and breadth versus focus in perceptual processing. Psychol. Sci. 27, 1632–1643 (2016).

    Article  PubMed  Google Scholar 

  43. Pfaff, D. W. Brain Arousal and Information Theory (Harvard Univ. Press, 2006).

    Book  Google Scholar 

  44. Sara, S. J. & Bouret, S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76, 130–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Servan-Schreiber, D., Printz, H. & Cohen, J. D. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 249, 892–895 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Kepecs, A., Uchida, N., Zariwala, H. A. & Mainen, Z. F. Neural correlates, computation and behavioural impact of decision confidence. Nature 455, 227–231 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kiani, R. & Shadlen, M. N. Representation of confidence associated with a decision by neurons in the parietal cortex. Science 324, 759–764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Persaud, N., McLeod, P. & Cowey, A. Post-decision wagering objectively measures awareness. Nat. Neurosci. 10, 257–261 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Jepma, M. & Nieuwenhuis, S. Pupil diameter predicts changes in the exploration–exploitation trade-off: evidence for the adaptive gain theory. J. Cogn. Neurosci. 23, 1587–1596 (2011).

    Article  PubMed  Google Scholar 

  50. Lempert, K. M., Chen, Y. L. & Fleming, S. M. Relating pupil dilation and metacognitive confidence during auditory decision-making. PLoS ONE 10, e0126588 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Satterthwaite, T. D. et al. Dissociable but inter-related systems of cognitive control and reward during decision making: evidence from pupillometry and event-related fMRI. Neuroimage 37, 1017–1031 (2007).

    Article  PubMed  Google Scholar 

  52. Wessel, J. R., Danielmeier, C. & Ullsperger, M. Error awareness revisited: accumulation of multimodal evidence from central and autonomic nervous systems. J. Cogn. Neurosci. 23, 3021–3036 (2011).

    Article  PubMed  Google Scholar 

  53. Manohar, S. G. & Husain, M. Reduced pupillary reward sensitivity in Parkinson’s disease. NPJ Parkinsons Dis. 1, 15026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robbins, T. W. & Everitt, B. J. Arousal Systems and Attention (MIT Press, 1995).

    Google Scholar 

  55. Bouret, S. & Richmond, B. J. Sensitivity of locus ceruleus neurons to reward value for goal-directed actions. J. Neurosci. 35, 4005–4014 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nieuwenhuis, S., De Geus, E. J. & Aston-Jones, G. The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology 48, 162–175 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hot spots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav. Brain Sci. 39, e200 (2016).

    Article  PubMed  Google Scholar 

  58. Yu, A. J. Change is in the eye of the beholder. Nat. Neurosci. 15, 933–935 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Reimer, J. et al. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7, 13289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nichols, T. E. & Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.-A. Stoica and N. Kabir for aiding in data collection, L. Ding and T. Doi for helpful comments. This work was funded by NIH grants F32 MH102009 (M.R.N.) and R01 EY015260 and NSF 1533623 (J.I.G.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the experiment and analyses and wrote the manuscript, K.K. collected the data, and K.K. and M.R.N. analysed the data.

Corresponding author

Correspondence to Joshua I. Gold.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3 (PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, K., Nassar, M., Sarode, S. et al. Arousal-related adjustments of perceptual biases optimize perception in dynamic environments. Nat Hum Behav 1, 0107 (2017). https://doi.org/10.1038/s41562-017-0107

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-017-0107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing