The functional brain networks that underlie Early Stone Age tool manufacture

Abstract

After 800,000 years of making simple Oldowan tools, early humans began manufacturing Acheulian handaxes around 1.75 million years ago. This advance is hypothesized to reflect an evolutionary change in hominin cognition and language abilities. We used a neuroarchaeology approach to investigate this hypothesis, recording brain activity using functional near-infrared spectroscopy as modern human participants learned to make Oldowan and Acheulian stone tools in either a verbal or nonverbal training context. Here we show that Acheulian tool production requires the integration of visual, auditory and sensorimotor information in the middle and superior temporal cortex, the guidance of visual working memory representations in the ventral precentral gyrus, and higher-order action planning via the supplementary motor area, activating a brain network that is also involved in modern piano playing. The right analogue to Broca’s area—which has linked tool manufacture and language in prior work1,2—was only engaged during verbal training. Acheulian toolmaking, therefore, may have more evolutionary ties to playing Mozart than quoting Shakespeare.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental set-up of the lithic reduction process.
Figure 2: Acheulian activation and the effect of training context.
Figure 3: Oldowan activation and the effect of training context.

References

  1. 1

    Stout, D., Toth, N., Schick, K. D. & Chaminade, T. Neural correlates of Early Stone Age tool-making: technology, language and cognition in human evolution. Phil. Trans. R. Soc. B 363, 1939–1949 (2008).

    Article  Google Scholar 

  2. 2

    Stout, D. & Chaminade, T. Stone tools, language and the brain in human evolution. Phil. Trans. R. Soc. B 367, 75–87 (2012).

    Article  Google Scholar 

  3. 3

    Schoenemann, P. T. Evolution of the size and functional areas of the human brain. Annu. Rev. Anthropol. 35, 379–406 (2006).

    Article  Google Scholar 

  4. 4

    Sherwood, C. C., Subiaul, F. & Zawadzki, T. W. A natural history of the human mind: tracing evolutionary changes in brain and cognition. J. Anat. 212, 426–454 (2008).

    Article  Google Scholar 

  5. 5

    Stout, D. & Hecht, E. in Human Paleoneurology (ed. Bruner, E.) 145–175 (Springer, 2015).

    Google Scholar 

  6. 6

    Binneman, J. & Beaumont, P. Use-wear analysis of two Acheulean handaxes from Wonderwerk Cave, Northern Cape. South Afr. Field Archaeol. 1, 92–97 (1992).

    Google Scholar 

  7. 7

    Domínguez-Rodrigo, M., Serrallonga, J., Juan-Tresserras, J., Alcala, L. & Luque, L. Woodworking activities by early humans: a plant residue analysis on Acheulian stone tools from Peninj (Tanzania). J. Hum. Evol. 40, 289–299 (2001).

    Article  Google Scholar 

  8. 8

    Solodenko, N. et al. Fat residue and use-wear found on Acheulian biface and scraper associated with butchered elephant remains at the site of Revadim, Israel. PLoS ONE 10, e0118572 (2015).

    Article  Google Scholar 

  9. 9

    Balzeau, A., Holloway, R. L. & Grimaud-Hervé, D. Variations and asymmetries in regional brain surface in the genus Homo. J. Hum. Evol. 62, 696–706 (2012).

    Article  Google Scholar 

  10. 10

    Wynn, T. The intelligence of Later Acheulean hominids. Man 14, 371–391 (1979).

    Article  Google Scholar 

  11. 11

    Stout, D., Hecht, E., Nada, K., Bradley, B. & Chaminade, T. Cognitive demands of Lower Paleolithic toolmaking. PLoS ONE 10, e0121804 (2015).

    Article  Google Scholar 

  12. 12

    Putt, S. S. Human Brain Activity during Stone Tool Production: Tracing the Evolution of Cognition and Language. PhD thesis, Iowa Univ. (2016).

  13. 13

    Mahaney, R. A. Exploring the complexity and structure of Acheulean stoneknapping in relation to natural language. Paleoanthropol. 2014, 586–606 (2014).

    Google Scholar 

  14. 14

    Stout, D. & Chaminade, T. The evolutionary neuroscience of tool making. Neuropsychologia 45, 1091–1100 (2007).

    Article  Google Scholar 

  15. 15

    Stout, D., Passingham, R., Frith, C., Apel, J. & Chaminade, T. Technology, expertise and social cognition in human evolution. Eur. J. Neurosci. 33, 1328–1338 (2011).

    Article  Google Scholar 

  16. 16

    Morgan, T. J. H. et al. Experimental evidence for the co-evolution of hominin tool-making teaching and language. Nat. Commun. 6, 6029 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Uomini, N. T. & Meyer, G. F. Shared brain lateralization patterns in language and Acheulean stone tool production: a functional transcranial Doppler ultrasound study. PLoS ONE 8, e72693 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Putt, S. S., Woods, A. D. & Franciscus, R. G. The role of verbal interaction during experimental bifacial stone tool manufacture. Lithic Technol. 39, 96–112 (2014).

    Article  Google Scholar 

  19. 19

    Wijeakumar, S., Spencer, J. P., Bohache, K., Boas, D. A. & Magnotta, V. A. Validating a new methodology for optical probe design and image registration in fNIRS studies. Neuroimage 106, 86–100 (2015).

    Article  Google Scholar 

  20. 20

    Wijeakumar, S., Huppert, T., Magnotta, V. A., Buss, A. T. & Spencer, J. P. Validating an image-based fNIRS approach with fMRI and a working memory task. Neuroimage 147, 204–218 (2016).

    Article  Google Scholar 

  21. 21

    Wynn, T. & Coolidge, F. L. The implications of the working memory model for the evolution of modern cognition. Int. J. Evol. Biol. 2011, 741357 (2011).

    Article  Google Scholar 

  22. 22

    Vouloumanos, A., Kiehl, K. A., Werker, J. F. & Liddle, P. F. Detection of sounds in the auditory stream: event-related fMRI evidence for differential activation to speech and nonspeech. J. Cogn. Neurosci. 13, 994–1005 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Lewis, W. Cortical networks related to human use of tools. Neuroscientist 12, 211–231 (2006).

    Article  Google Scholar 

  24. 24

    Leff, A. P. et al. The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke. Brain 132, 3401–3410 (2009).

    Article  Google Scholar 

  25. 25

    Goldberg, G. Supplementary motor area structure and function: review and hypotheses. Behav. Brain Sci. 8, 567–588 (1985).

    Article  Google Scholar 

  26. 26

    Augustine, J. R. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Rev. 22, 229–244 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    Article  Google Scholar 

  28. 28

    Stout, D., Apel, J., Commander, J. & Roberts, M. Late Acheulean technology and cognition at Boxgrove, UK. J. Archaeol. Sci. 41, 576–590 (2014).

    Article  Google Scholar 

  29. 29

    Gowlett, J. A. J. in Lucy to Language: The Benchmark Papers (eds Dunbar, R. I. M., Gamble, C. & Gowlett, J. A. J.) Ch. 18 (Oxford Univ. Press, 2014).

    Google Scholar 

  30. 30

    Bangert, M. et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage 30, 917–926 (2006).

    Article  Google Scholar 

  31. 31

    Wong, C. & Gallate, J. The function of the anterior temporal lobe: a review of the empirical evidence. Brain Res. 1449, 94–116 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Pascual, B., et al. Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb. Cortex 25, 680–702 (2015).

    Article  Google Scholar 

  33. 33

    Rogers, R. D. et al. Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J. Neurosci. 19, 9029–9038 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Vigneau, M. et al. What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. Neuroimage 54, 577–593 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Levy, B. J. & Wagner, A. D. Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann. NY Acad. Sci. 1224, 40–62 (2011).

    Article  Google Scholar 

  36. 36

    Corbetta, M. & Schulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Hauk, O., Johnsrude, I. & Pulvermüller, F. Somatotopic representation of action words in human motor and premotor cortex. Neuron 41, 301–307 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Carvalho, S., Cunha, E., Sousa, C. & Matsuzawa, T. Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. J. Hum. Evol. 55, 148–163 (2008).

    Article  Google Scholar 

  39. 39

    Proffitt, T. et al. Wild monkeys flake stone tools. Nature 539, 85–88 (2016).

    CAS  Article  Google Scholar 

  40. 40

    Martínez, I. et al. Communicative capacities in Middle Pleistocene humans from the Sierra de Atapuerca in Spain. Quat. Int. 295, 94–101 (2013).

    Article  Google Scholar 

  41. 41

    Quam, R. M. et al. Early hominin auditory ossicles from South Africa. Proc. Natl Acad. Sci. USA 110, 8847–8851 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Antón, S. C. Potts, R. & Aiello, L. C. Evolution of early Homo: an integrated biological perspective. Science 345, 1236828 (2014).

    Article  Google Scholar 

  43. 43

    Arbib, M. A. From mirror neurons to complex imitation in the evolution of language and tool use. Annu. Rev. Anthropol. 40, 257–273 (2011).

    Article  Google Scholar 

  44. 44

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn (Laurence Erlbaum Associates, 1988).

    Google Scholar 

  45. 45

    Soper, D. S. A-priori sample size calculator for Student’s t-tests. http://www.danielsoper.com/statcalc/calculator.aspx?id=47 (2017).

  46. 46

    Szaflarski, J. P. et al. Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59, 238–244 (2002).

    CAS  Article  Google Scholar 

  47. 47

    Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).

    CAS  Article  Google Scholar 

  48. 48

    Skinner, H. A. The drug abuse screening test. Addict Behav 7, 363–371 (1982)

    CAS  Article  Google Scholar 

  49. 49

    London, E. D., Ernst, M., Grant, S., Bonson, K. & Weinstein, A. Orbitofrontal cortex and human drug abuse: functional imaging. Cereb. Cortex 10, 334–342 (2000).

    CAS  Article  Google Scholar 

  50. 50

    Yankosec, K. E. & Howell, D. A narrative review of dexterity assessments. J. Hand Ther. 22, 258–270 (2009).

    Article  Google Scholar 

  51. 51

    Desrosiers, J., Rochette, A., Hebert, R. & Bravo, G. The Minnesota manual dexterity test: reliability, validity and reference values studies with healthy elderly people. Can. J. Occup. Ther. 64, 270–276 (1997).

    Article  Google Scholar 

  52. 52

    Toth, N. The Oldowan reassessed: a close look at early stone artifacts. J. Archaeol. Sci. 12, 101–120 (1985).

    Article  Google Scholar 

  53. 53

    Stout, D. Stone toolmaking and the evolution of human culture and cognition. Phil. Trans R. Soc. B 366, 1050–1059 (2011).

    Article  Google Scholar 

  54. 54

    Hoard, R. J. & Anglen, A. A. Lithic analysis. Plains Anthropol. 48, 36–50 (2003).

    Article  Google Scholar 

  55. 55

    Andrefsky, W. Lithics: Macroscopic Approaches to Analysis 2nd edn (Cambridge Univ. Press, 2005).

    Google Scholar 

  56. 56

    Toth, N., Schick, K. & Semaw, S. In The Oldowan: Case Studies into the Earliest Stone Age (Stone Age Institute, 2006).

    Google Scholar 

  57. 57

    Bamforth, D. B. & Finlay, N. Introduction: archaeological approaches to lithic production skill and craft learning. J. Archaeol. Method Theory 15, 1–27 (2008).

    Article  Google Scholar 

  58. 58

    Badre, D. & Wagner, A. D. Frontal lobe mechanisms that resolve proactive interference. Cereb. Cortex 15, 2003–2012 (2005).

    Article  Google Scholar 

  59. 59

    Pessoa, L., Gutierrez, E., Bandettini, P. A. & Ungerleider, L. G. Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35, 975–987 (2002).

    CAS  Article  Google Scholar 

  60. 60

    Pessoa, L. & Ungerleider, L. G. Neural correlates of change detection and change blindness in a working memory task. Cereb. Cortex 14, 511–520 (2004).

    Article  Google Scholar 

  61. 61

    Huppert, T. J ., Diamond, S. G ., Franceschini, M. A. & Boas, D. A. HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Optics 48, D280–D298 (2009).

    Article  Google Scholar 

  62. 62

    Yücel, M. A., Selb, J., Cooper, R. J. & Boas, D. A. Targeted principle component analysis: a new motion artifact correction approach for near-infrared spectroscopy. J. Innovat. Opt. Health Sci. 07, 1350066 (2014).

    Article  Google Scholar 

  63. 63

    Fang, Q. & Boas, D. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178–20190 (2009).

    CAS  Article  Google Scholar 

  64. 64

    Tikhonov, A. Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 5, 1035–1038 (1963).

    Google Scholar 

  65. 65

    Calvetti, D., Morigi, S., Reichel, L. & Sgallari, F. Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 123, 423–446 (2000).

    Article  Google Scholar 

  66. 66

    Chen, G., Adleman, N. E., Saad, Z. S., Leibenluft, E. & Cox, R. W. Applications of multivariate modeling to neuroimaging group analysis: a comprehensive alternative to univariate general linear model. Neuroimage 99, 571–588 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Woods for his time and knapping expertise, the Stone Age Institute for its contributions to Fig. 1, and D. Jones, C. Daniel, E. DeForest, A. Vega, N. Fox, A. Wells, E. Hoeper, E. Dellopolous, M. Adams, S. Allchin and G. Brua for their assistance in the lab. S.S.P. acknowledges support from the Wenner–Gren Foundation (8968), Leakey Foundation, Sigma Xi, the Scientific Research Society and the University of Iowa. S.S.P. held an American Fellowship from AAUW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

S.S.P. and R.G.F. developed the concept for the study. S.S.P. and J.P.S. designed the study. S.S.P. performed the experiment and carried out the analyses, under the supervision of S.W. and J.P.S. S.S.P. and J.P.S. wrote the manuscript, with contributions from S.W. and R.G.F.

Corresponding authors

Correspondence to Shelby S. Putt or John P. Spencer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Tables 1-3, Supplementary Figures 1-3, Supplementary References. (PDF 424 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Putt, S., Wijeakumar, S., Franciscus, R. et al. The functional brain networks that underlie Early Stone Age tool manufacture. Nat Hum Behav 1, 0102 (2017). https://doi.org/10.1038/s41562-017-0102

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing