Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Climate change may alter human physical activity patterns

Abstract

Regular physical activity supports healthy human functioning13. Might climate change—by modifying the environmental determinants of human physical activity—alter exercise rates in the future4? Here we conduct an empirical investigation of the relationship between meteorological conditions, physical activity and future climate change. Using data on reported participation in recreational physical activity from over 1.9 million US survey respondents between 2002 and 2012, coupled with daily meteorological data, we show that both cold and acutely hot temperatures, as well as precipitation days, reduce physical activity. We combine our historical estimates with output from 21 climate models and project the possible physical activity effects of future climatic changes by 2050 and 2099. Our projection indicates that warming over the course of this century may increase net recreational physical activity in the United States. Activity may increase most during the winter in northern states and decline most during the summer in southern states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recreational physical activity peaks at higher temperatures and heat index values and declines with higher numbers of precipitation days.
Figure 2: Heat most reduces participation in physical activity among people who are obese or elderly.
Figure 3: Climate change may alter temporal patterns of physical activity.
Figure 4: Climate change may alter physical activity rates spatially throughout the United States.
Figure 5: Climate change may increase physical activity the most in cooler months in the northern United States and reduce it the most in summer months in the southern United States.

Similar content being viewed by others

References

  1. Hill, J. O. & Peters, J. C. Environmental contributions to the obesity epidemic. Science 280, 1371–1374 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Sigal, R. J., Kenny, G. P., Wasserman, D. H., Castaneda-Sceppa, C. & White, R. D. Physical activity/exercise and type 2 diabetes a consensus statement from the American Diabetes Association. Diabetes Care 29, 1433–1438 (2006).

    Article  PubMed  Google Scholar 

  3. Shiroma, E. J. & Lee, I.-M. Physical activity and cardiovascular health lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation 122, 743–752 (2010).

    Article  PubMed  Google Scholar 

  4. Stamatakis, E., Nnoaham, K., Foste, C. & Scarboroug, P. The influence of global heating on discretionary physical activity: an important and overlooked consequence of climate change. J. Phys. Act. Health 10, 765–768 (2013).

    Article  PubMed  Google Scholar 

  5. Mokdad, A. H., Marks, J. S., Stroup, D. F. & Gerberding, J. L. Actual causes of death in the United States, 2000. J. Am. Med. Assoc. 291, 1238–1245 (2004).

    Article  Google Scholar 

  6. Hillman, C. H., Erickson, K. I. & Kramer, A. F. Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Teychenne, M., Ball, K. & Salmon, J. Physical activity and likelihood of depression in adults: a review. Prev. Med. 46, 397–411 (2008).

    Article  PubMed  Google Scholar 

  8. Haskell, W. L. et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 116, 1081–1093 (2007).

    Article  PubMed  Google Scholar 

  9. Brownson, R. C., Boehmer, T. K. & Luke, D. A. Declining rates of physical activity in the United States: what are the contributors? Annu. Rev. Public Health 26, 421–443 (2005).

    Article  PubMed  Google Scholar 

  10. Brownson, R. C., Baker, E. A., Housemann, R. A., Brennan, L. K. & Bacak, S. J. Environmental and policy determinants of physical activity in the United States. Am. J. Public Health 91, 1995–2003 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giles-Corti, B. & Donovan, R. J. The relative influence of individual, social and physical environment determinants of physical activity. Soc. Sci. Med. 54, 1793–1812 (2002).

    Article  PubMed  Google Scholar 

  12. Tucker, P. & Gilliland, J. The effect of season and weather on physical activity: a systematic review. Public Health 121, 909–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Dannenberg, A. L., Keller, J. B., Wilson, P. W. & Castelli, W. P. Leisure time physical activity in the Framingham Offspring Study. Description, seasonal variation, and risk factor correlates. Am. J. Epidemiol. 129, 76–88 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Oswald, A. J. & Wu, S. Objective confirmation of subjective measures of human well-being: evidence from the USA. Science 327, 576–579 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Nelson, D. E., Holtzman, D., Bolen, J., Stanwyck, C. A. & Mack, K. A. Reliability and validity of measures from the Behavioral Risk Factor Surveillance System (BRFSS). Soz. Praventivmed. 46, S3–S42 (2001).

    PubMed  Google Scholar 

  16. Yore, M. M. et al. Reliability and validity of the instrument used in BRFSS to assess physical activity. Med. Sci. Sports Exerc. 39, 1267–1274 (2007).

    Article  PubMed  Google Scholar 

  17. Siegel, P. Z., Brackbill, R. M. & Heath, G. W. The epidemiology of walking for exercise: implications for promoting activity among sedentary groups. Am. J. Public Health 85, 706–710 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evenson, K. R., Herring, A. H. & Huston, S. L. Evaluating change in physical activity with the building of a multi-use trail. Am. J. Prev. Med. 28, 177–185 (2005).

    Article  PubMed  Google Scholar 

  19. Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the Global Historical Climatology Network-daily database. J. Atmos. Oceanic Tech. 29, 897–910 (2012).

    Article  Google Scholar 

  20. Kanamitsu, M. et al. NCEP–DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1643 (2002).

    Article  Google Scholar 

  21. Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. K. & Arnold, J. G. Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. J. Appl. Meteorol. Climatol. 47, 475–497 (2008).

    Article  Google Scholar 

  22. Deschênes, O. & Greenstone, M. Climate change, mortality, and adaptation: evidence from annual fluctuations in weather in the US. Am. Econ. J. Appl. Econ. 3, 152–185 (2011).

    Article  Google Scholar 

  23. Graff Zivin, J. S. & Neidell, M. Temperature and the allocation of time: implications for climate change. J. Labor Econ. 32, 1–26 (2014).

    Article  Google Scholar 

  24. Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Hsiang, S. Climate econometrics. Annu. Rev. Resour. Econ. 8, 43–75 (2016).

    Article  Google Scholar 

  26. Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data. (MIT Press, 2010).

    Google Scholar 

  27. Auffhammer, M., Hsiang, S. M., Schlenker, W. & Sobel, A. Using weather data and climate model output in economic analyses of climate change. Rev. Environ. Econ. Policy 7, 181–198 (2013).

    Article  Google Scholar 

  28. Dell, M., Jones, B. F. & Olken, B. A. What do we learn from the weather? The new climate-economy literature. J. Econ. Lit. 52, 740–798 (2014).

    Article  Google Scholar 

  29. Obradovich, N. Climate change may speed democratic turnover. Climatic. Change 140, 135–147 (2017).

    Article  Google Scholar 

  30. Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

    Article  PubMed  Google Scholar 

  31. Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on human conflict. Science 341, 1235367 (2013).

    Article  PubMed  Google Scholar 

  32. Moulton, B. R. An illustration of a pitfall in estimating the effects of aggregate variables on micro units. Rev. Econ. Stat. 72, 334–338 (1990).

    Article  Google Scholar 

  33. Cameron, A. C., Gelbach, J. B. & Miller, D. L. Robust inference with multiway clustering. J. Bus. Econ. Stat. 29, 238–249 (2011).

    Article  Google Scholar 

  34. Stock, J. H. & Watson, M. W. Heteroskedasticity-robust standard errors for fixed effects panel data regression. Econometrica 76, 155–174 (2008).

    Article  Google Scholar 

  35. Haldane, J. S. The influence of high air temperatures no. I. J. Hyg. 5, 494–513 (1905).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Simon, H. B. Hyperthermia. N. Engl. J. Med. 329, 483–487 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Buzan, J., Oleson, K. & Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 8, 151–170 (2015).

    Article  Google Scholar 

  38. Kjellstrom, T. et al. Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu. Rev. Public Health 37, 97–112 (2016).

    Article  PubMed  Google Scholar 

  39. Minard, D., Belding, H. S. & Kingston, J. R. Prevention of heat casualties. J. Am. Med. Assoc. 165, 1813–1818 (1957).

    Article  CAS  PubMed  Google Scholar 

  40. Steadman, R. G. The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. 18, 861–873 (1979).

    Article  Google Scholar 

  41. Rothfusz, L. P. The Heat Index Equation (or, More Than You ever Wanted to Know about Heat Index) Technical Attachment SR 90-23 (National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, 1990).

  42. Périard, J. D., Travers, G. J., Racinais, S. & Sawka, M. N. Cardiovascular adaptations supporting human exercise-heat acclimation. Auton. Neurosci. 196, 52–62 (2016).

    Article  PubMed  Google Scholar 

  43. Van Someren, E. J., Raymann, R. J., Scherder, E. J., Daanen, H. A. & Swaab, D. F. Circadian and age-related modulation of thermoreception and temperature regulation: mechanisms and functional implications. Ageing Res. Rev. 1, 721–778 (2002).

    Article  PubMed  Google Scholar 

  44. Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161–163 (2014).

    Article  Google Scholar 

  45. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).

    Article  Google Scholar 

  46. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  47. Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).

    Article  CAS  Google Scholar 

  48. Hausman, J. Mismeasured variables in econometric analysis: problems from the right and problems from the left. J. Econ. Perspect. 15, 57–67 (2001).

    Article  Google Scholar 

  49. Gasparrini, A. et al. Changes in susceptibility to heat during the summer: a multicountry analysis. Am. J. Epidemiol. 183, 1027–1036 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Davis, L. W. & Gertler, P. J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl Acad. Sci. USA 112, 5962–5967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parsons, K. Occupational health impacts of climate change: current and future ISO standards for the assessment of heat stress. Ind. Health 51, 86–100 (2013).

    Article  PubMed  Google Scholar 

  52. Sawka, M. N., Leon, L. R., Montain, S. J. & Sonna, L. A. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr. Physiol. 1, 1883–1928 (2011).

    Article  PubMed  Google Scholar 

  53. Castellani, J. W. & Tipton, M. J. Cold stress effects on exposure tolerance and exercise performance. Compr. Physiol. 6, 443–469 (2015).

    Article  PubMed  Google Scholar 

  54. Doherty, T. J. & Clayton, S. The psychological impacts of global climate change. Am. Psychol. 66, 265–276 (2011).

    Article  PubMed  Google Scholar 

  55. Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).

    Article  Google Scholar 

  56. Basu, R. & Samet, J. M. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiologic Rev. 24, 190–202 (2002).

    Article  Google Scholar 

  57. Deschenes, O. Temperature, human health, and adaptation: a review of the empirical literature. Energy Econ. 46, 606–619 (2014).

    Article  Google Scholar 

  58. Hajat, S., Armstrong, B. G., Gouveia, N. & Wilkinson, P. Mortality displacement of heat-related deaths: a comparison of Delhi, São Paulo, and London. Epidemiology 16, 613–620 (2005).

    Article  PubMed  Google Scholar 

  59. Gething, P. W. et al. Climate change and the global malaria recession. Nature 465, 342–345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo, Y. et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology 25, 781–789 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shi, L., Kloog, I., Zanobetti, A., Liu, P. & Schwartz, J. D. Impacts of temperature and its variability on mortality in New England. Nat. Clim. Change 5, 988–991 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the San Diego Supercomputer Center for their assistance. N.O. was supported during the course of manuscript preparation by the Frontiers of Innovation Fellowship from the University of California San Diego, the Belfer Center for Science and International Affairs at the Harvard Kennedy School, and the MIT Media Lab. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.O. conceived the research question, constructed and analysed the historical data, conducted the forecast, and compiled the Supplementary Information. N.O. and J.H.F. developed figures and drafted the manuscript.

Corresponding author

Correspondence to Nick Obradovich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary References, Supplementary Tables 1–6. (PDF 839 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obradovich, N., Fowler, J. Climate change may alter human physical activity patterns. Nat Hum Behav 1, 0097 (2017). https://doi.org/10.1038/s41562-017-0097

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-017-0097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing