Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reminiscing about positive memories buffers acute stress responses

Abstract

Recalling happy memories elicits positive feelings and enhances one’s wellbeing, suggesting a potential adaptive function in using this strategy for coping with stress. In two studies, we explored whether recalling autobiographical memories that have a positive content—that is, remembering the good times—can dampen the hypothalamic–pituitary–adrenal axis stress response. Participants underwent an acute stressor or control task followed by autobiographical memory recollection (of only positive or neutral valence). Across both studies, recalling positive, but not neutral, memories resulted in a dampened cortisol rise and reduced negative affect. Further, individuals with greater self-reported resiliency showed enhanced mood, despite stress exposure. During positive reminiscence, we observed engagement of corticostriatal circuits previously implicated in reward processing and emotion regulation, and stronger connectivity between ventrolateral and dorsolateral prefrontal cortices as a function of positivity. These findings highlight the restorative and protective function of self-generated positive emotions via memory recall in the face of stress.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experimental procedure and timeline of neuroendocrine assessments for day 2 (stress manipulation or control task).
Figure 2: Neuroendocrine responses to acute stress during the behavioural study.
Figure 3: Resiliency mediates the relationship between emotion ratings during memory recall and subsequent mood for individuals in the stresspositive group.
Figure 4: Neuroendocrine responses to acute stress in the fMRI study.
Figure 5: Neural activity during the recall of autobiographical memory under acute stress.

Similar content being viewed by others

References

  1. Lazarus, R. S. & Folkman, S. Stress, Appraisal and Coping (Springer, 1984).

    Google Scholar 

  2. Gross, J. J. Emotion regulation: affective, cognitive, and social consequences. Psychophysiology 39, 281–291 (2002).

    Article  PubMed  Google Scholar 

  3. Raio, C. M., Orederu, T. A., Palazzolo, L., Shurick, A. A. & Phelps, E. A. Cognitive emotion regulation fails the stress test. Proc. Natl Acad. Sci. USA 110, 15139–15144 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arnsten, A. F. T. Stress signaling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10, 410–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Catalino, L. I. & Fredrickson, B. L. A Tuesday in the life of a flourisher: the role of positive emotional reactivity in optimal mental health. Emotion 11, 938–950 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bower, G. H. Mood and memory. Am. Psychol. 36, 129–148 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Speer, M. E., Bhanji, J. P. & Delgado, M. R. Savoring the past: positive memories evoke value representations in the striatum. Neuron 84, 847–856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heller, A. S. et al. Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc. Natl Acad. Sci. USA 106, 22445–22450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Admon, R. & Pizzagalli, D. A. Corticostriatal pathways contribute to the natural time course of positive mood. Nat. Commun. 6, 10065 (2015).

    Article  PubMed  Google Scholar 

  10. Kirschbaum, C. & Hellhammer, D. H. Salivary cortisol in psychoneuroendocrine research: recent developments and applications. Psychoneuroendocrinology 19, 313–333 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Schoofs, D., Wolf, O. T. & Smeets, T. Cold pressor stress impairs performance on working memory tasks requiring executive functions in healthy young men. Behav. Neurosci. 123, 1066–1075 (2009).

    Article  PubMed  Google Scholar 

  12. Porcelli, A. J. & Delgado, M. R. Acute stress modulates risk taking in financial decision making. Psychol. Sci. 20, 278–283 (2009).

    Article  PubMed  Google Scholar 

  13. Porcelli, A. J. & Delgado, M. R. Stress and decision making: effects on valuation, learning, and risk-taking. Curr. Opin. Behav. Sci. 14, 33–39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kendler, K. S., Karkowski, L. M. & Prescott, C. A. Causal relationship between stressful life events and the onset of major depression. Am. J. Psychiat. 156, 837–841 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Porcelli, A. J., Lewis, A. H. & Delgado, M. R. Acute stress influences neural circuits of reward processing. Front. Neurosci. 6, 1–9 (2012).

    Article  Google Scholar 

  16. Folkman, S., Lazarus, R. S., Gruen, R. J. & DeLongis, A. Appraisal, coping, health status, and psychological symptoms. J. Pers. Soc. Psychol. 50, 571–579 (1986).

    Article  CAS  PubMed  Google Scholar 

  17. Buhle, J. T. et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb. Cortex 24, 2981–2990 (2014).

    Article  PubMed  Google Scholar 

  18. Delgado, M. R., Nearing, K. I., Ledoux, J. E. & Phelps, E. A . Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59, 829–838 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwabe, L., Haddad, L. & Schachinger, H. HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology 33, 890–895 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Morawetz, C., Bode, S., Derntl, B. & Heekeren, H. R. The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 72, 111–128 (2017).

    Article  PubMed  Google Scholar 

  21. Pruessner, J. C., Kirschbaum, C., Meinlschmid, G. & Hellhammer, D. H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 28, 916–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–1070 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Preacher, K. J. & Hayes, A. F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 36, 717–731 (2004).

    Article  PubMed  Google Scholar 

  24. Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl Acad. Sci. USA 113, 7900–7905 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goebel, R., Esposito, F. & Formisano, E. Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum. Brain Mapp. 27, 392–401 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. O’Doherty, J. P. Beyond simple reinforcement learning: the computational neurobiology of reward-learning and valuation. Eur. J. Neurosci. 35, 987–990 (2012).

    Article  PubMed  Google Scholar 

  28. Delgado, M. R. Reward-related responses in the human striatum. Ann. NY Acad. Sci. 1104, 70–88 (2007).

    Article  PubMed  Google Scholar 

  29. Bogdan, R. & Pizzagalli, D. A. Acute stress reduces reward responsiveness: implications for depression. Biol. Psychiat. 60, 1147–1154 (2006).

    Article  PubMed  Google Scholar 

  30. Ong, A. D., Bergeman, C. S., Bisconti, T. L. & Wallace, K. A. Psychological resilience, positive emotions, and successful adaptation to stress in later life. J. Pers. Soc. Psychol. 91, 730–749 (2006).

    Article  PubMed  Google Scholar 

  31. Tugade, M. M. & Fredrickson, B. L. Resilient individuals use positive emotions to bounce back from negative emotional experiences. J. Pers. Soc. Psychol. 86, 320–333 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heatherton, T. F. & Wagner, D. D. Cognitive neuroscience of self-regulation failure. Trends Cogn. Sci. 15, 132–139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liston, C., McEwen, B. S. & Casey, B. J. Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc. Natl Acad. Sci. USA 106, 912–917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Badre, D., Poldrack, R. A., Paré-Blagoev, E. J., Insler, R. Z. & Wagner, A. D. Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47, 907–918 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Robbins, T. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos. Trans. R. Soc. B Biol. Sci. 362, 917–932 (2007).

    Article  CAS  Google Scholar 

  36. Morawetz, C., Bode, S., Baudewig, J., Kirilina, E. & Heekeren, H. R. Changes in effective connectivity between dorsal and ventral prefrontal regions moderate emotion regulation. Cereb. Cortex 26, 1923–1937 (2016).

    Article  PubMed  Google Scholar 

  37. Baer, R. A. Mindfulness training as a clinical intervention: a conceptual and empirical review. Clin. Psychol. Sci. Pract. 10, 125–143 (2003).

    Article  Google Scholar 

  38. Tang, Y.-Y., Hölzel, B. K. & Posner, M. I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16, 1–13 (2015).

    CAS  Google Scholar 

  39. Creswell, J. D. et al. Affirmation of personal values buffers neuroendocrine and psychological stress responses. Psychol. Sci. 16, 846–851 (2005).

    Article  PubMed  Google Scholar 

  40. Young, K. D., Bellgowan, P. S. F., Bodurka, J. & Drevets, W. C. Behavioral and neurophysiological correlates of autobiographical memory deficits in patients with depression and individuals at high risk for depression. JAMA Psychiat. 70, 698–708 (2013).

    Article  Google Scholar 

  41. Greening, S. G., Osuch, E. A., Williamson, P. C. & Mitchell, D. G. V. The neural correlates of regulating positive and negative emotions in medication-free major depression. Soc. Cogn. Affect. Neurosci. 9, 628–637 (2014).

    Article  PubMed  Google Scholar 

  42. Burke, H. M., Davis, M. C., Otte, C. & Mohr, D. C. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology 30, 846–856 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bryant, F. B., Smart, C. M. & King, S. P. Using the past to enhance the present: boosting happiness through positive reminiscence. J. Happiness Stud. 6, 227–260 (2005).

    Article  Google Scholar 

  44. Mazzucchelli, T. G., Kane, R. T. & Rees, C. S. Behavioral activation interventions for well-being: a meta-analysis. J. Posit. Psychol. 5, 105–121 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ramirez, S. et al. Activating positive memory engrams suppresses depression-like behaviour. Nature 522, 335–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steptoe, A., Wardle, J. & Marmot, M. Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. Proc. Natl Acad. Sci. USA 102, 6508–6512 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heller, A. S. et al. Sustained striatal activity predicts eudaimonic well-being and cortisol output. Psychol. Sci. 24, 2191–2200 (2013).

    Article  PubMed  Google Scholar 

  48. McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  49. Sheline, Y. I. Neuroimaging studies of mood disorder effects on the brain. Biol. Psychiat. 54, 338–352 (2003).

    Article  PubMed  Google Scholar 

  50. Quoidbach, J., Wood, A. M. & Hansenne, M. Back to the future: the effect of daily practice of mental time travel into the future on happiness and anxiety. J. Posit. Psychol. 4, 349–355 (2009).

    Article  Google Scholar 

  51. Fardo, F., Allen, M., Jegindø, E.-M. E., Angrilli, A. & Roepstorff, A. Neurocognitive evidence for mental imagery-driven hypoalgesic and hyperalgesic pain regulation. Neuroimage 120, 350–361 (2015).

    Article  PubMed  Google Scholar 

  52. Diamond, D. M., Bennett, M. C., Fleshner, M. & Rose, G. M. Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 2, 421–430 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Joels, M. Corticosteroid effects in the brain: U-shape it. Trends Pharmacol. Sci. 27, 244–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Lupien, S. J. et al. The modulatory effects of corticosteroids on cognition: studies in young human populations. Psychoneuroendocrinology 27, 401–416 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Lupien, S. J. et al. Acute modulation of aged human memory by pharmacological manipulation of glucocorticoids. J. Clin. Endocrinol. Metab. 87, 3798–3807 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Okuda, S., Roozendaal, B. & McGaugh, J. L. Glucocorticoid effects on object recognition memory require training-associated emotional arousal. Proc. Natl Acad. Sci. USA 101, 853–858 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leuner, B., Caponiti, J. M. & Gould, E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus 22, 861–868 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Lupien, S. J., Maheu, F., Tu, M., Fiocco, A. & Schramek, T. E. The effects of stress and stress hormones on human cognition: implications for the field of brain and cognition. Brain Cogn. 65, 209–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Troy, A. S., Wilhelm, F. H., Shallcross, A. J. & Mauss, I. B. Seeing the silver lining: cognitive reappraisal ability moderates the relationship between stress and depressive symptoms. Emotion 10, 783–795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Connor, K. M. & Davidson, J. R. T. Development of a new resilience scale: the Connor-Davidson Resilience Scale (CD-RISC). Depress. Anxiety 18, 76–82 (2003).

    Article  PubMed  Google Scholar 

  61. Beck, A., Ward, C., Mendelson, M., Mock, J. & Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiat. 4, 561–571 (1961).

    Article  CAS  PubMed  Google Scholar 

  62. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C. & Fiez, J. A. Tracking the hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84, 3072–3077 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Medical Publishers, 1988).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institute on Drug Abuse (DA027764). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors thank J. Bhanji for helpful comments and discussion, and H. Manglani and E. Kim for assistance with data collection.

Author information

Authors and Affiliations

Authors

Contributions

M.E.S. and M.R.D. designed the experiments. M.E.S. performed the experiments and analysed the data. M.E.S. and M.R.D. wrote the manuscript and approved the final version for publication.

Corresponding author

Correspondence to Mauricio R. Delgado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Discussion, Supplementary Figures 1–3, Supplementary Tables 1–4, Supplementary References. (PDF 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speer, M., Delgado, M. Reminiscing about positive memories buffers acute stress responses. Nat Hum Behav 1, 0093 (2017). https://doi.org/10.1038/s41562-017-0093

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-017-0093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing