Evidence for a large-scale brain system supporting allostasis and interoception in humans

Abstract

Large-scale intrinsic brain systems have been identified for exteroceptive senses (such as sight, hearing and touch). We introduce an analogous system for representing sensations from within the body, called interoception, and demonstrate its relation to regulating peripheral systems in the body, called allostasis. Employing the recently introduced Embodied Predictive Interoception Coding (EPIC) model, we used tract-tracing studies of macaque monkeys, followed by two intrinsic functional magnetic resonance imaging samples (N = 280 and N = 270) to evaluate the existence of an intrinsic allostatic–interoceptive system in the human brain. Another sample (N = 41) allowed us to evaluate the convergent validity of the hypothesized allostatic–interoceptive system by showing that individuals with stronger connectivity between system hubs performed better on an implicit index of interoceptive ability related to autonomic fluctuations. Implications include insights for the brain’s functional architecture, dissolving the artificial boundary between mind and body, and unifying mental and physical illness.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: We identified key visceromotor cortical regions (in red) that provide cortical control of the body’s internal milieu.
Figure 2: Eight regions (‘seeds’) used to estimate the unified allostasis/interoceptive system connecting the cortical and amygdalar visceromotor regions and primary interoceptive regions.
Figure 3: The unified allostatic–interoceptive system is composed of two large-scale intrinsic networks that share several hubs.
Figure 4: Subcortical connectivity of the two integrated intrinsic networks within the allostatic–interoceptive system (N = 280; P < 0.05 uncorrected).
Figure 5: The default mode and salience networks each support a wide array of psychological functions.

References

  1. 1

    Sepulcre, J., Sabuncu, M. R., Yeo, T. B., Liu, H. & Johnson, K. A. Stepwise connectivity of the modal cortex reveals the multimodal organization of the human brain. J. Neurosci. 32, 10649–10661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    CAS  Google Scholar 

  3. 3

    Chennu, S. et al. Expectation and attention in hierarchical auditory prediction. J. Neurosci. 33, 11194–11205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Shipp, S. The importance of being agranular: a comparative account of visual and motor cortex. Phil. Trans. R. Soc. Lond. B 360, 797–814 (2005).

    Google Scholar 

  5. 5

    Zelano, C., Mohanty, A. & Gottfried, J. A. Olfactory predictive codes and stimulus templates in piriform cortex. Neuron 72, 178–187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Kusumoto-Yoshida, I., Liu, H., Chen, B. T., Fontanini, A. & Bonci, A. Central role for the insular cortex in mediating conditioned responses to anticipatory cues. Proc. Natl Acad. Sci. USA 112, 1190–1195 (2015).

    CAS  Google Scholar 

  7. 7

    Adams, R. A., Shipp, S. & Friston, K. J. Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218, 611–643 (2013).

    Google Scholar 

  8. 8

    Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

    Google Scholar 

  9. 9

    Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    CAS  Google Scholar 

  10. 10

    Pezzulo, G., Rigoli, F. & Friston, K. Active inference, homeostatic regulation and adaptive behavioural control. Prog. Neurobiol. 134, 17–35 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. 11

    Barrett, L. F. & Simmons, W. K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 16, 419–429 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Chanes, L. & Barrett, L. F. Redefining the role of limbic areas in cortical processing. Trends Cogn. Sci. 20, 96–106 (2016).

    Google Scholar 

  13. 13

    Seth, A. K. Interoceptive inference, emotion, and the embodied self. Trends Cogn. Sci. 17, 565–573 (2013).

    Google Scholar 

  14. 14

    Seth, A. K., Suzuki, K. & Critchley, H. D. An interoceptive predictive coding model of conscious presence. Front. Psychol. 2, 395–410 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Gu, X. & FitzGerald, T. H. Interoceptive inference: homeostasis and decision-making. Trends Cogn. Sci. 18, 269–270 (2014).

    Google Scholar 

  16. 16

    Allen, M. & Friston, K. J. From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synthese http://dx.doi.org/10.1007/s11229-016-1288-5 (2016).

  17. 17

    Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nat. Rev. Neurosci. 3, 655–666 (2002).

    CAS  PubMed  Google Scholar 

  18. 18

    Craig, B. How Do You Feel? An Interoceptive Moment with Your Neurobiological Self (Princeton Univ. Press, 2014).

    Google Scholar 

  19. 19

    Sherrington, C. in Textbook of Physiology (ed. Schäfer, E. A. ) 920–1001 (Pentland, 1900).

    Google Scholar 

  20. 20

    Sterling, P. & Laughlin, S. Principles of Neural Design (MIT Press, 2015).

    Google Scholar 

  21. 21

    Sterling, P. Allostasis: a model of predictive regulation. Physiol. Behav. 106, 5–15 (2012).

    CAS  Google Scholar 

  22. 22

    McEwen, B. S. & Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 153, 2093–2101 (1993).

    CAS  Google Scholar 

  23. 23

    Barrett, L. F. How Emotions Are Made: The Secret Life of the Brain (Houghton Mifflin Harcourt, 2017).

    Google Scholar 

  24. 24

    Barrett, L. F. The theory of constructed emotion: an active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. http://dx.doi.org/10.1093/scan/nsw154 (2016).

  25. 25

    Barrett, L. F., Quigley, K. S. & Hamilton, P. An active inference theory of allostasis and interoception in depression. Phil. Trans. R. Soc. B 371, http://dx.doi.org/10.1098/rstb.2016.0011 (2016).

  26. 26

    Damasio, A. & Carvalho, G. B. The nature of feelings: evolutionary and neurobiological origins. Nat. Rev. Neurosci. 14, 143–152 (2013).

    CAS  Google Scholar 

  27. 27

    Critchley, H. D. & Harrison, N. A. Visceral influences on brain and behavior. Neuron 77, 624–638 (2013).

    CAS  Google Scholar 

  28. 28

    Barrett, L. F. & Satpute, A. B. Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr. Opin. Neurobiol. 23, 361–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Anderson, M. L. After Phrenology: Neural Reuse and the Interactive Brain (MIT Press, 2014).

    Google Scholar 

  30. 30

    Yeo, B. T. et al. Functional specialization and flexibility in human association cortex. Cereb. Cortex 25, 3654–3672 (2015).

    Google Scholar 

  31. 31

    Barbas, H. & Rempel-Clower, N. Cortical structure predicts the pattern of corticocortical connections. Cereb. Cortex 7, 635–646 (1997).

    CAS  Google Scholar 

  32. 32

    Barbas, H. General cortical and special prefrontal connections: principles from structure to function. Annu. Rev. Neurosci. 38, 269–289 (2015).

    CAS  Google Scholar 

  33. 33

    Rempel-Clower, N. L. & Barbas, H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the rhesus monkey is related to cortical structure and function. Cereb. Cortex 10, 851–865 (2000).

    CAS  Google Scholar 

  34. 34

    Medalla, M. & Barbas, H. Specialized prefrontal ‘auditory fields’: organization of primate prefrontal-temporal pathways. Front. Neurosci. 8, 77 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Medalla, M. & Barbas, H. Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure. Eur. J. Neurosci. 23, 161–179 (2006).

    CAS  Google Scholar 

  36. 36

    Hilgetag, C. C. & Grant, S. Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. Neuroimage 51, 1006–1017 (2010).

    Google Scholar 

  37. 37

    Goulas, A., Uylings, H. B. & Stiers, P. Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex. Cereb. Cortex 24, 1178–1194 (2014).

    Google Scholar 

  38. 38

    Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D. & Friston, K. J. The computational anatomy of psychosis. Front. Psychiatry 4, 47 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. 40

    Shipp, S., Adams, R. A. & Friston, K. J. Reflections on agranular architecture: predictive coding in the motor cortex. Trends Neurosci. 36, 706–716 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Weston, C. S. Another major function of the anterior cingulate cortex: the representation of requirements. Neurosci. Biobehav. Rev. 36, 90–110 (2012).

    CAS  Google Scholar 

  42. 42

    Vogt, B. A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 6, 533–544 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Ongur, D., An, X. & Price, J. L. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401, 480–505 (1998).

    CAS  Google Scholar 

  44. 44

    Vogt, B. A., Vogt, L., Farber, N. B. & Bush, G. Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485, 218–239 (2005).

    PubMed  PubMed Central  Google Scholar 

  45. 45

    Nieuwenhuys, R. The insular cortex: a review. Prog. Brain Res. 195, 123–163 (2012).

    Google Scholar 

  46. 46

    Avery, J. A. et al. A common gustatory and interoceptive representation in the human mid-insula. Hum. Brain Mapp. 36, 2996–3006 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. 47

    Hutchison, R. M. & Everling, S. Monkey in the middle: why non-human primates are needed to bridge the gap in resting-state investigations. Front. Neuroanat. 6, 29 (2012).

    PubMed  PubMed Central  Google Scholar 

  48. 48

    Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43–56 (2011).

    CAS  Google Scholar 

  49. 49

    Cohen, A. L. et al. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (2008).

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Raichle, M. E. The brain's default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    CAS  Google Scholar 

  51. 51

    Touroutoglou, A., Hollenbeck, M., Dickerson, B. C. & Barrett, L. F. Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention. Neuroimage 60, 1947–1958 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    PubMed  PubMed Central  Google Scholar 

  54. 54

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS  Google Scholar 

  55. 55

    Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Google Scholar 

  56. 56

    Nieuwenhuys, R., Voogd, J. & van Huijzen, C. in The Human Central Nervous System Ch. 8, 253–279 (Springer, 2008).

    Google Scholar 

  57. 57

    Brooks, J. C., Faull, O. K., Pattinson, K. T. & Jenkinson, M. Physiological noise in brainstem fMRI. Front. Hum. Neurosci. 7, 623 (2013).

    PubMed  PubMed Central  Google Scholar 

  58. 58

    Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    CAS  Google Scholar 

  59. 59

    Ongur, D. & Price, J. L. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219 (2000).

    CAS  Google Scholar 

  60. 60

    Hoistad, M. & Barbas, H. Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala. Neuroimage 40, 1016–1033 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International Affective Picture System (IAPS): Affective Ratings of Pictures and Instruction Manual Technical Report A-8 (Univ. of Florida, 2008).

  62. 62

    Moriguchi, Y. et al. Differential hemodynamic response in affective circuitry with aging: an fMRI study of novelty, valence, and arousal. J. Cogn. Neurosci. 23, 1027–1041 (2011).

    Google Scholar 

  63. 63

    Weierich, M. R., Wright, C. I., Negreira, A., Dickerson, B. C. & Barrett, L. F. Novelty as a dimension in the affective brain. Neuroimage 49, 2871–2878 (2010).

    Google Scholar 

  64. 64

    Damasio, A. R. Descartes' Error: Emotion, Reason, and the Human Brain (Putnam, 1994).

    Google Scholar 

  65. 65

    Wiens, S., Mezzacappa, E. S. & Katkin, E. S. Heartbeat detection and the experience of emotions. Cogn. Emot. 14, 417–427 (2000).

    Google Scholar 

  66. 66

    Barrett, L. F., Quigley, K. S., Bliss-Moreau, E. & Aronson, K. R. Interoceptive sensitivity and self-reports of emotional experience. J. Pers. Soc. Psychol. 87, 684–697 (2004).

    PubMed  PubMed Central  Google Scholar 

  67. 67

    Dunn, B. D. et al. Listening to your heart: how interoception shapes emotion experience and intuitive decision making. Psychol. Sci. 21, 1835–1844 (2010).

    Google Scholar 

  68. 68

    Whitehead, W. E., Drescher, V. M., Heiman, P. & Blackwell, B. Relation of heart rate control to heartbeat perception. Biofeedback Self-Regul. 2, 371–392 (1977).

    Google Scholar 

  69. 69

    Schandry, R. Heart beat perception and emotional experience. Psychophysiology 18, 483–488 (1981).

    CAS  Google Scholar 

  70. 70

    Kleckner, I. R., Wormwood, J. B., Simmons, W. K., Barrett, L. F. & Quigley, K. S. Methodological recommendations for a heartbeat detection-based measure of interoceptive sensitivity. Psychophysiology 52, 1432–1440 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. 71

    Khalsa, S. S., Rudrauf, D., Feinstein, J. S. & Tranel, D. The pathways of interoceptive awareness. Nat. Neurosci. 12, 1494–1496 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Lindquist, K. A. & Barrett, L. F. A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn. Sci. 16, 533–540 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. 73

    van den Heuvel, M. P. & Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 31, 15775–15786 (2011).

    CAS  Google Scholar 

  74. 74

    McIntosh, A. R. Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2, 175–182 (2004).

    Google Scholar 

  75. 75

    Beissner, F., Schumann, A., Brunn, F., Eisentrager, D. & Bar, K. J. Advances in functional magnetic resonance imaging of the human brainstem. Neuroimage 86, 91–98 (2014).

    Google Scholar 

  76. 76

    Bar, K. J. et al. Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage 134, 53–63 (2016).

    Google Scholar 

  77. 77

    Edlow, B. L., McNab, J. A., Witzel, T. & Kinney, H. C. The structural connectome of the human central homeostatic network. Brain Connect. 6, 187–200 (2016).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Dum, R. P., Levinthal, D. J. & Strick, P. L. Motor, cognitive, and affective areas of the cerebral cortex influence the adrenal medulla. Proc. Natl Acad. Sci. USA 113, 9922–9927 (2016).

    CAS  Google Scholar 

  79. 79

    Blessing, W. W. & Benarroch, E. E. in The Human Nervous System (eds Mai, J. K. & Paxinos, G. ) 1058–1073 (Academic, 2012).

    Google Scholar 

  80. 80

    Simmons, W. K. et al. Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Hum. Brain Mapp. 34, 2944–2958 (2012).

    Google Scholar 

  81. 81

    Margulies, D. S. et al. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37, 579–588 (2007).

    Google Scholar 

  82. 82

    Bickart, K. C., Dickerson, B. C. & Barrett, L. F. The amygdala as a hub in brain networks that support social life. Neuropsychologia 63, 235–248 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Smith, D. V., Clithero, J. A., Boltuck, S. E. & Huettel, S. A. Functional connectivity with ventromedial prefrontal cortex reflects subjective value for social rewards. Soc. Cogn. Affect. Neurosci. 9, 2017–2025 (2014).

    PubMed  PubMed Central  Google Scholar 

  84. 84

    van den Heuvel, M. P., Kahn, R. S., Goni, J. & Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl Acad. Sci. USA 109, 11372–11377 (2012).

    CAS  Google Scholar 

  85. 85

    van den Heuvel, M. P. & Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33, 14489–14500 (2013).

    CAS  Google Scholar 

  86. 86

    Mesulam, M. M. From sensation to cognition. Brain 121, 1013–1052 (1998).

    Google Scholar 

  87. 87

    Zold, C. L. & Hussain Shuler, M. G. Theta oscillations in visual cortex emerge with experience to convey expected reward time and experienced reward rate. J. Neurosci. 35, 9603–9614 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Satpute, A. B. et al. Involvement of sensory regions in affective experience: a meta-analysis. Front. Psychol. 6, 1860 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. 89

    Vuilleumier, P. How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585–594 (2005).

    Google Scholar 

  90. 90

    Allen, M. et al. Anterior insula coordinates hierarchical processing of tactile mismatch responses. Neuroimage 127, 34–43 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. 91

    Sun, F. W. et al. Youthful brains in older adults: preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging. J. Neurosci. 36, 9659–9668 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Barrett, L. F. & Bliss-Moreau, E. Affect as a psychological primitive. Adv. Exp. Soc. Psychol. 41, 167–218 (2009).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Barrett, L. F. & Russell, J. A. Structure of current affect: controversies and emerging consensus. Curr. Dir. Psychol. Sci. 8, 10–14 (1999).

    Google Scholar 

  94. 94

    Kuppens, P., Tuerlinckx, F., Russell, J. A. & Barrett, L. F. The relation between valence and arousal in subjective experience. Psychol. Bull. 139, 917–940 (2013).

    Google Scholar 

  95. 95

    Damasio, A. R. The Feeling of What Happens: Body and Emotion in the Making of Consciousness (Houghton Mifflin Harcourt, 1999).

    Google Scholar 

  96. 96

    Dreyfus, G. & Thompson, E. in The Cambridge Handbook of Consciousness ( Zelazo, P. D., Moscovitch, M. & Thompson, E. ) 89–114 (Cambridge Univ. Press, 2007).

    Google Scholar 

  97. 97

    Edelman, G. M. & Tononi, G. A Universe of Consciousness: How Matter Becomes Imagination (Basic Books, 2000).

    Google Scholar 

  98. 98

    James, W. The Principles of Psychology Vol. 1 (Dover, 1890/2007).

    Google Scholar 

  99. 99

    Searle, J. R. The Rediscovery of the Mind (MIT Press, 1992).

    Google Scholar 

  100. 100

    Searle, J. R. Mind: A Brief Introduction (Oxford Univ. Press, 2004).

    Google Scholar 

  101. 101

    Wundt, W. Outlines of Psychology (Wilhelm Engelmann, 1897).

    Google Scholar 

  102. 102

    Fodor, J. A. The Modularity of Mind: An Essay on Faculty Psychology (MIT Press, 1983).

    Google Scholar 

  103. 103

    Li, D., Christ, S. E. & Cowan, N. Domain-general and domain-specific functional networks in working memory. Neuroimage 102, 646–656 (2014).

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Fuster, J. M. The Module: Crisis of a Paradigm (Cell, 2000).

  105. 105

    Kayser, C., Petkov, C. I., Augath, M. & Logothetis, N. K. Functional imaging reveals visual modulation of specific fields in auditory cortex. J. Neurosci. 27, 1824–1835 (2007).

    CAS  Google Scholar 

  106. 106

    Liang, M., Mouraux, A., Hu, L. & Iannetti, G. D. Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nat. Commun. 4, 1979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Edelman, G. M. & Gally, J. A. Degeneracy and complexity in biological systems. Proc. Natl Acad. Sci. USA 98, 13763–13768 (2001).

    CAS  Google Scholar 

  108. 108

    Tong, Y. et al. Systemic low-frequency oscillations in bold signal vary with tissue type. Front. Neurosci. 10, 313 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. 109

    Satpute, A. B. et al. Identification of discrete functional subregions of the human periaqueductal gray. Proc. Natl Acad. Sci. USA 110, 17101–17106 (2013).

    CAS  Google Scholar 

  110. 110

    Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B. & Bandettini, P. A. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009).

    PubMed  PubMed Central  Google Scholar 

  111. 111

    Raz, G. et al. Functional connectivity dynamics during film viewing reveal common networks for different emotional experiences. Cogn. Affect. Behav. Neurosci. 16, 709–723 (2016).

    Google Scholar 

  112. 112

    Morrison, S. F. Differential control of sympathetic outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R683–698 (2001).

    CAS  Google Scholar 

  113. 113

    Buckner, R. L. The serendipitous discovery of the brain's default network. Neuroimage 62, 1137–1145 (2012).

    Google Scholar 

  114. 114

    Mesulam, M. The evolving landscape of human cortical connectivity: facts and inferences. Neuroimage 62, 2182–2189 (2012).

    Google Scholar 

  115. 115

    Hassabis, D. & Maguire, E. A. The construction system of the brain. Phil. Trans. R. Soc. Lond. B 364, 1263–1271 (2009).

    Google Scholar 

  116. 116

    Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667 (2010).

    PubMed  PubMed Central  Google Scholar 

  118. 118

    Li, S. S. & McNally, G. P. The conditions that promote fear learning: prediction error and pavlovian fear conditioning. Neurobiol. Learn. Mem. 108, 14–21 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. 119

    Barrett, L. F. How Emotions Are Made: The New Science of the Mind and Brain (Houghton Mifflin Harcourt, 2016).

  120. 120

    Guidi, M., Huber, L., Lampe, L., Gauthier, C. J. & Moller, H. E. Lamina-dependent calibrated bold response in human primary motor cortex. Neuroimage 141, 250–261 (2016).

    Google Scholar 

  121. 121

    Crossley, N. A. et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137, 2382–2395 (2014).

    PubMed  PubMed Central  Google Scholar 

  122. 122

    Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. 123

    Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011).

    Google Scholar 

  124. 124

    Harshaw, C. Interoceptive dysfunction: toward an integrated framework for understanding somatic and affective disturbance in depression. Psychol. Bull. 141, 311–363 (2015).

    Google Scholar 

  125. 125

    Paulus, M. P. & Stein, M. B. Interoception in anxiety and depression. Brain Struct. Funct. 214, 451–463 (2010).

    PubMed  PubMed Central  Google Scholar 

  126. 126

    Naqvi, N. H. & Bechara, A. The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Struct. Funct. 214, 435–450 (2010).

    PubMed  PubMed Central  Google Scholar 

  127. 127

    Farmer, M. A., Baliki, M. N. & Apkarian, A. V. A dynamic network perspective of chronic pain. Neurosci. Lett. 520, 197–203 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12, 453–466 (2011).

    CAS  Google Scholar 

  129. 129

    Radley, J., Morilak, D., Viau, V. & Campeau, S. Chronic stress and brain plasticity: mechanisms underlying adaptive and maladaptive changes and implications for stress-related cns disorders. Neurosci. Biobehav. Rev. 58, 79–91 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. 130

    Gianaros, P. J. & Wager, T. D. Brain–body pathways linking psychological stress and physical health. Curr. Dir. Psychol. Sci. 24, 313–321 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. 131

    Gefen, T. et al. Morphometric and histologic substrates of cingulate integrity in elders with exceptional memory capacity. J. Neurosci. 35, 1781–1791 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Rogalski, E. J. et al. Youthful memory capacity in old brains: anatomic and genetic clues from the northwestern superaging project. J. Cogn. Neurosci. 25, 29–36 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. 133

    Angevaren, M., Aufdemkampe, G., Verhaar, H. J., Aleman, A. & Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. http://dx.doi.org/10.1002/14651858.CD005381.pub3 (2008).

  134. 134

    Farb, N. et al. Interoception, contemplative practice, and health. Front. Psychol. 6, 763 (2015).

    PubMed  PubMed Central  Google Scholar 

  135. 135

    Tang, Y. Y., Holzel, B. K. & Posner, M. I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16, 213–225 (2015).

    CAS  Google Scholar 

  136. 136

    Thombs, B. D. et al. Prevalence of depression in survivors of acute myocardial infarction. J. Gen. Intern. Med. 21, 30–38 (2006).

    PubMed  PubMed Central  Google Scholar 

  137. 137

    Moreno-Smith, M., Lutgendorf, S. K. & Sood, A. K. Impact of stress on cancer metastasis. Future Oncol. 6, 1863–1881 (2010).

    PubMed  PubMed Central  Google Scholar 

  138. 138

    Kolodny, A. et al. The prescription opioid and heroin crisis: a public health approach to an epidemic of addiction. Annu. Rev. Public Health 36, 559–574 (2015).

    Google Scholar 

  139. 139

    Turecki, G. & Brent, D. A. Suicide and suicidal behaviour. Lancet 387, 1227–1239 (2016).

    Google Scholar 

  140. 140

    Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C. & Yeo, B. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011).

    PubMed  PubMed Central  Google Scholar 

  141. 141

    Touroutoglou, A., Andreano, J. M., Barrett, L. F. & Dickerson, B. C. Brain network connectivity–behavioral relationships exhibit trait-like properties: evidence from hippocampal connectivity and memory. Hippocampus 25, 1591–1598 (2015).

    PubMed  PubMed Central  Google Scholar 

  142. 142

    Kramer, J. H. et al. NIH EXAMINER: conceptualization and development of an executive function battery. J. Int. Neuropsychol. Soc. 20, 11–19 (2014).

    Google Scholar 

  143. 143

    Bradley, M. M. & Lang, P. J. Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994).

    CAS  Google Scholar 

  144. 144

    Bohus, B. et al. The neurobiology of the central nucleus of the amygdala in relation to neuroendocrine and autonomic outflow. Prog. Brain Res. 107, 447–460 (1996).

    CAS  Google Scholar 

  145. 145

    Mufson, E. J., Mesulam, M. M. & Pandya, D. N. Insular interconnections with the amygdala in rhesus monkey. Neuroscience 6, 1231–1248 (1981).

    CAS  Google Scholar 

  146. 146

    Mufson, E. J. & Mesulam, M. M. Insula of the old world monkey. II: afferent cortical input and comments on the claustrum. J. Comp. Neurol. 212, 23–37 (1982).

    Google Scholar 

  147. 147

    Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34, 905–923 (2007).

    CAS  Google Scholar 

  148. 148

    Jo, H. J. et al. Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state fMRI. J. Appl. Math. 2013, 935154 (2013).

    Google Scholar 

  149. 149

    Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity mri networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    PubMed  Google Scholar 

  150. 150

    Tucholka, A., Fritsch, V., Poline, J. B. & Thirion, B. An empirical comparison of surface-based and volume-based group studies in neuroimaging. Neuroimage 63, 1443–1453 (2012).

    Google Scholar 

  151. 151

    Cronbach, L. J., Rajaratnam, N. & Gleser, G. C. Theory of generalizability: a liberalization of reliability theory. Br. J. Stat. Psychol. 16, 137–163 (1963).

    Google Scholar 

  152. 152

    Boucsein, W. et al. Publication recommendations for electrodermal measurements. Psychophysiology 49, 1017–1034 (2012).

    PubMed  PubMed Central  Google Scholar 

  153. 153

    Schell, A. M., Dawson, M. E. & Filion, D. L. Psychophysiological correlates of electrodermal lability. Psychophysiology 25, 619–632 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Xia, C., Touroutoglou, A., Quigley, K. S., Barrett, L. F. & Dickerson, B. C. Salience network connectivity modulates skin conductance responses in predicting arousal experience. J. Cogn. Neurosci. http://dx.doi.org/10.1162/jocn_a_01087 (2016).

  155. 155

    Fredrikson, M. et al. Functional neuroanatomical correlates of electrodermal activity: a positron emission tomographic study. Psychophysiology 35, 179–185 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. 156

    Morecraft, R. J. et al. Cytoarchitecture and cortical connections of the anterior cingulate and adjacent somatomotor fields in the rhesus monkey. Brain Res. Bull. 87, 457–497 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. III: efferent cortical output and comments on function. J. Comp. Neurol. 212, 38–52 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Cavdar, S. et al. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J. Anat. 198, 463–472 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    An, X., Bandler, R., Ongur, D. & Price, J. L. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J. Comp. Neurol. 401, 455–479 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160

    Saper, C. B. Reciprocal parabrachial–cortical connections in the rat. Brain Res. 242, 33–40 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Saper, C. B. Convergence of autonomic and limbic connections in the insular cortex of the rat. J. Comp. Neurol. 210, 163–173 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Fudge, J. L., Breitbart, M. A., Danish, M. & Pannoni, V. Insular and gustatory inputs to the caudal ventral striatum in primates. J. Comp. Neurol. 490, 101–118 (2005).

    PubMed  PubMed Central  Google Scholar 

  163. 163

    Carmichael, S. T. & Price, J. L. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371, 179–207 (1996).

    CAS  PubMed  Google Scholar 

  164. 164

    Aggleton, J. P., Burton, M. J. & Passingham, R. E. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 190, 347–368 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. 165

    Stefanacci, L. & Amaral, D. G. Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J. Comp. Neurol. 451, 301–323 (2002).

    PubMed  PubMed Central  Google Scholar 

  166. 166

    Chikama, M., McFarland, N. R., Amaral, D. G. & Haber, S. N. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. J. Neurosci. 17, 9686–9705 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167

    Chiba, T., Kayahara, T. & Nakano, K. Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res. 888, 83–101 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168

    Vogt, B. A. & Pandya, D. N. Cingulate cortex of the rhesus monkey. II. Cortical afferents. J. Comp. Neurol. 262, 271–289 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169

    Rempel-Clower, N. L. & Barbas, H. Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 398, 393–419 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. 170

    Freedman, L. J., Insel, T. R. & Smith, Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J. Comp. Neurol. 421, 172–188 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171

    Terreberry, R. R. & Neafsey, E. J. Rat medial frontal cortex: a visceral motor region with a direct projection to the solitary nucleus. Brain Res. 278, 245–249 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. 172

    van der Kooy, D., McGinty, J. F., Koda, L. Y., Gerfen, C. R. & Bloom, F. E. Visceral cortex: a direct connection from prefrontal cortex to the solitary nucleus in rat. Neurosci. Lett. 33, 123–127 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. 173

    Room, P., Russchen, F. T., Groenewegen, H. J. & Lohman, A. H. Efferent connections of the prelimbic (area 32) and the infralimbic (area 25) cortices: an anterograde tracing study in the cat. J. Comp. Neurol. 242, 40–55 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. 174

    Pandya, D. N., Van Hoesen, G. W. & Mesulam, M. M. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp. Brain Res. 42, 319–330 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. 175

    Vogt, B. A. & Palomero-Gallagher, N. in The Human Nervous System (eds Mai, J. K. & Paxinos, G. ) Ch. 25, 943–987 (Academic, 2012).

    Google Scholar 

  176. 176

    Haber, S. N., Kim, K. S., Mailly, P. & Calzavara, R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J. Neurosci. 26, 8368–8376 (2006).

    CAS  Google Scholar 

  177. 177

    Price, J. L. & Amaral, D. G. An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J. Neurosci. 1, 1242–1259 (1981).

    CAS  Google Scholar 

  178. 178

    Fudge, J. L., Kunishio, K., Walsh, P., Richard, C. & Haber, S. N. Amygdaloid projections to ventromedial striatal subterritories in the primate. Neuroscience 110, 257–275 (2002).

    CAS  Google Scholar 

  179. 179

    Morecraft, R. J. & Van Hoesen, G. W. Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Res. Bull. 45, 209–232 (1998).

    CAS  Google Scholar 

  180. 180

    Saleem, K. S., Kondo, H. & Price, J. L. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J. Comp. Neurol. 506, 659–693 (2008).

    Google Scholar 

  181. 181

    Barbas, H., Ghashghaei, H., Dombrowski, S. M. & Rempel-Clower, N. L. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J. Comp. Neurol. 410, 343–367 (1999).

    CAS  Google Scholar 

  182. 182

    Ongur, D., Ferry, A. T. & Price, J. L. Architectonic subdivision of the human orbital and medial prefrontal cortex. J. Comp. Neurol. 460, 425–449 (2003).

    PubMed  Google Scholar 

  183. 183

    Ghaziri, J. et al. The corticocortical structural connectivity of the human insula. Cereb. Cortex http://dx.doi.org/10.1093/cercor/bhv308 (2015).

  184. 184

    Wiech, K., Jbabdi, S., Lin, C. S., Andersson, J. & Tracey, I. Differential structural and resting state connectivity between insular subdivisions and other pain-related brain regions. Pain 155, 2047–2055 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185

    Gianaros, P. J. & Sheu, L. K. A review of neuroimaging studies of stressor-evoked blood pressure reactivity: emerging evidence for a brain-body pathway to coronary heart disease risk. Neuroimage 47, 922–936 (2009).

    PubMed  PubMed Central  Google Scholar 

  186. 186

    Kurth, F., Zilles, K., Fox, P. T., Laird, A. R. & Eickhoff, S. B. A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct. 214, 519–534 (2010).

    PubMed  PubMed Central  Google Scholar 

  187. 187

    Gianaros, P. J. et al. An inflammatory pathway links atherosclerotic cardiovascular disease risk to neural activity evoked by the cognitive regulation of emotion. Biol. Psychiatry 75, 738–745 (2014).

    CAS  Google Scholar 

  188. 188

    Wager, T. D. et al. Brain mediators of cardiovascular responses to social threat. Part I: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. Neuroimage 47, 821–835 (2009).

    PubMed  PubMed Central  Google Scholar 

  189. 189

    Harper, R. M. et al. fMRI responses to cold pressor challenges in control and obstructive sleep apnea subjects. J. Appl. Physiol. 94, 1583–1595 (2003).

    Google Scholar 

  190. 190

    Gianaros, P. J. et al. Individual differences in stressor-evoked blood pressure reactivity vary with activation, volume, and functional connectivity of the amygdala. J. Neurosci. 28, 990–999 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. 191

    Zilles, K. & Amunts, K. in The Human Nervous System (eds Mai, J. K. & Paxinos G. ) Ch. 23, 836–895 (Elsevier, 2012).

    Google Scholar 

  192. 192

    Petrides, M. & Pandya, D. N. in The Human Nervous System (eds Mai, J. K. & Paxinos, G. ) Ch. 26, 988–1011 (Elsevier, 2012).

    Google Scholar 

  193. 193

    Barbas, H. Specialized elements of orbitofrontal cortex in primates. Ann. NY Acad. Sci. 1121, 10–32 (2007).

    Google Scholar 

  194. 194

    Mesulam, M. M. & Mufson, E. J. Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J. Comp. Neurol. 212, 1–22 (1982).

    CAS  Google Scholar 

  195. 195

    Yarkoni, T. Big correlations in little studies: inflated fMRI correlations reflect low statistical power — commentary on Vul et al. (2009). Persp. Psychol. Sci. 4, 294–298 (2009).

    Google Scholar 

  196. 196

    Wilson-Mendenhall, C. D., Barrett, L. F., Simmons, W. K. & Barsalou, L. W. Grounding emotion in situated conceptualization. Neuropsychologia 49, 1105–1127 (2011).

    Google Scholar 

  197. 197

    Wilson-Mendenhall, C. D., Barrett, L. F. & Barsalou, L. W. Variety in emotional life: within-category typicality of emotional experiences is associated with neural activity in large-scale brain networks. Soc. Cogn. Affect. Neurosci. 10, 62–71 (2015).

    Google Scholar 

  198. 198

    Kober, H. et al. Functional grouping and cortical-subcortical interactions in emotion: A meta-analysis of neuroimaging studies. Neuroimage 42, 998–1031 (2008).

    PubMed  PubMed Central  Google Scholar 

  199. 199

    Skerry, A. E. & Saxe, R. Neural representations of emotion are organized around abstract event features. Curr. Biol. 25, 1945–1954 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. 200

    Clithero, J. A. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302 (2014).

    Google Scholar 

  201. 201

    Bickart, K. C., Hollenbeck, M. C., Barrett, L. F. & Dickerson, B. C. Intrinsic amygdala-cortical functional connectivity predicts social network size in humans. J. Neurosci. 32, 14729–14741 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. 202

    Baliki, M. N., Mansour, A. R., Baria, A. T. & Apkarian, A. V. Functional reorganization of the default mode network across chronic pain conditions. PLoS ONE 9, e106133 (2014).

    PubMed  PubMed Central  Google Scholar 

  203. 203

    Schurz, M., Radua, J., Aichhorn, M., Richlan, F. & Perner, J. Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neurosci. Biobehav. Rev. 42, 9–34 (2014).

    Google Scholar 

  204. 204

    Morelli, S. A. & Lieberman, M. D. The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety. Front. Hum. Neurosci. 7, 160 (2013).

    PubMed  PubMed Central  Google Scholar 

  205. 205

    Chiong, W. et al. The salience network causally influences default mode network activity during moral reasoning. Brain 136, 1929–1941 (2013).

    PubMed  PubMed Central  Google Scholar 

  206. 206

    Liu, X., Hairston, J., Schrier, M. & Fan, J. Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 35, 1219–1236 (2011).

    Google Scholar 

  207. 207

    Engelmann, J. M. et al. Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. Neuroimage 60, 252–262 (2012).

    Google Scholar 

  208. 208

    Schacter, D. L. & Addis, D. R. The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Phil. Trans. R. Soc. Lond. B 362, 773–786 (2007).

    Google Scholar 

  209. 209

    Bar, M., Aminoff, E., Mason, M. & Fenske, M. The units of thought. Hippocampus 17, 420–428 (2007).

    Google Scholar 

  210. 210

    Fernandino, L. et al. Concept representation reflects multimodal abstraction: A framework for embodied semantics. Cereb. Cortex 26, 2018–2034 (2016).

    Google Scholar 

  211. 211

    Touroutoglou, A., Lindquist, K. A., Dickerson, B. C. & Barrett, L. F. Intrinsic connectivity in the human brain does not reveal networks for 'basic' emotions. Soc. Cogn. Affect. Neurosci. 10, 1257–1265 (2015).

    PubMed  PubMed Central  Google Scholar 

  212. 212

    Dhanjal, N. S. & Wise, R. J. Frontoparietal cognitive control of verbal memory recall in alzheimer's disease. Ann. Neurol. 76, 241–251 (2014).

    Google Scholar 

  213. 213

    Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl Acad. Sci. USA 104, 11073–11078 (2007).

    CAS  Google Scholar 

  214. 214

    Ansell, E. B., Rando, K., Tuit, K., Guarnaccia, J. & Sinha, R. Cumulative adversity and smaller gray matter volume in medial prefrontal, anterior cingulate, and insula regions. Biol. Psychiatry 72, 57–64 (2012).

    PubMed  PubMed Central  Google Scholar 

  215. 215

    Caseras, X. et al. Anatomical and functional overlap within the insula and anterior cingulate cortex during interoception and phobic symptom provocation. Hum. Brain Mapp. 34, 1220–1229 (2013).

    Google Scholar 

  216. 216

    Wolf, D. H. et al. Striatal intrinsic reinforcement signals during recognition memory: relationship to response bias and dysregulation in schizophrenia. Front. Behav. Neurosci. 5, 81 (2011).

    PubMed  PubMed Central  Google Scholar 

  217. 217

    Grady, C. L., Luk, G., Craik, F. I. & Bialystok, E. Brain network activity in monolingual and bilingual older adults. Neuropsychologia 66, 170–181 (2015).

    Google Scholar 

  218. 218

    Derbyshire, S. W., Whalley, M. G., Stenger, V. A. & Oakley, D. A. Cerebral activation during hypnotically induced and imagined pain. Neuroimage 23, 392–401 (2004).

    Google Scholar 

  219. 219

    Feldstein Ewing, S. W., Filbey, F. M., Sabbineni, A., Chandler, L. D. & Hutchison, K. E. How psychosocial alcohol interventions work: a preliminary look at what fMRI can tell us. Alcohol. Clin. Exp. Res. 35, 643–651 (2011).

    PubMed  PubMed Central  Google Scholar 

  220. 220

    Singer, T. et al. Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–1162 (2004).

    CAS  Google Scholar 

  221. 221

    Kirk, U., Downar, J. & Montague, P. R. Interoception drives increased rational decision-making in meditators playing the ultimatum game. Front. Neurosci. 5, 49 (2011).

    PubMed  PubMed Central  Google Scholar 

  222. 222

    FitzGerald, T. H., Schwartenbeck, P. & Dolan, R. J. Reward-related activity in ventral striatum is action contingent and modulated by behavioral relevance. J. Neurosci. 34, 1271–1279 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. 223

    Fernandino, L., Humphries, C. J., Conant, L., Seidenberg, M. S. & Binder, J. R. Heteromodal cortical areas encode sensory-motor features of word meaning. J. Neurosci. 36, 9763–9769 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. 224

    Hermans, E. J. et al. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 334, 1151–1153 (2011).

    CAS  Google Scholar 

  225. 225

    Clark-Polner, E., Wager, T. D., Satpute, A. B. & Barrett, L. F. in The Handbook of Emotion (eds Barrett, L. F., Lewis, M. & Haviland-Jones, J. M. ) 146–165 (Guilford Press, 2016).

    Google Scholar 

Download references

Acknowledgements

We thank M. A. Garcia-Cabezas for comments and advice on neuroanatomy, and H. Evrard for discussions on anatomical connectivity. This research was supported by funds from the National Institutes on Aging (R01 AG030311) to L.F.B. and B.C.D., the US Army Research Institute for the Behavioral and Social Sciences Contracts (W5J9CQ-11-C-0046 and W5J9CQ-12-C-0049) to L.F.B., the National Cancer Institute (U01 CA193632) to L.F.B., the National Institute of Mental Health Ruth L. Kirschstein National Research Service Award (F32MH096533) to I.R.K., the National Cancer Institute (UG1 CA189961 and R25 CA102618) to support I.R.K., the National Institutes of Mental Health (K01MH096175-01) and Oklahoma Tobacco Research Center grants to W.K.S., a Fyssen Foundation postdoctoral fellowship and Alicia Koplowitz Foundation short-term fellowship to L.C. and the Fonds de recherche sante Quebec fellowship award to C.X. The views, opinions and findings contained in this paper are those of the authors and shall not be construed as an official Department of the Army position, policy or decision, unless so designated by other documents. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

The study was designed and analysed by all the authors, and the manuscript was written by I.R.K. and L.F.B. with comments and edits from other authors.

Corresponding authors

Correspondence to Ian R. Kleckner or Lisa Feldman Barrett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Tables 1–5, Supplementary Figures 1–8, Supplementary References. (PDF 2018 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kleckner, I., Zhang, J., Touroutoglou, A. et al. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat Hum Behav 1, 0069 (2017). https://doi.org/10.1038/s41562-017-0069

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing