Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Five factors that guide attention in visual search

Abstract

How do we find what we are looking for? Even when the desired target is in the current field of view, we need to search because fundamental limits on visual processing make it impossible to recognize everything at once. Searching involves directing attention to objects that might be the target. This deployment of attention is not random. It is guided to the most promising items and locations by five factors discussed here: bottom-up salience, top-down feature guidance, scene structure and meaning, the previous history of search over timescales ranging from milliseconds to years, and the relative value of the targets and distractors. Modern theories of visual search need to incorporate all five factors and specify how these factors combine to shape search behaviour. An understanding of the rules of guidance can be used to improve the accuracy and efficiency of socially important search tasks, from security screening to medical image perception.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A surprisingly difficult search task.
Figure 2: The basic visual search paradigm.
Figure 3
Figure 4: Scene guidance.

References

  1. 1

    Hyman, I. E., Boss, S. M., Wise, B. M., McKenzie, K. E. & Caggiano, J. M. Did you see the unicycling clown? Inattentional blindness while walking and talking on a cell phone. Appl. Cognitive Psych. 24, 597–607 (2010).

    Article  Google Scholar 

  2. 2

    Keshvari, S. & Rosenholtz, R. Pooling of continuous features provides a unifying account of crowding. J. Vis. 16, 39 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3

    Rosenholtz, R., Huang, J. & Ehinger, K. A. Rethinking the role of top-down attention in vision: effects attributable to a lossy representation in peripheral vision. Front. Psychol.http://dx.doi.org/10.3389/fpsyg.2012.00013 (2012).

  4. 4

    Wolfe, J. M. What do 1,000,000 trials tell us about visual search? Psychol. Sci. 9, 33–39 (1998).

    Article  Google Scholar 

  5. 5

    Moran, R., Zehetleitner, M., Liesefeld, H., Müller, H. & Usher, M. Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions. Psychon. B. Rev. 23, 1300–1315 (2015).

    Article  Google Scholar 

  6. 6

    Townsend, J. T. & Wenger, M. J. The serial-parallel dilemma: a case study in a linkage of theory and method. Psychon. B. Rev. 11, 391–418 (2004).

    Article  Google Scholar 

  7. 7

    Egeth, H. E., Virzi, R. A. & Garbart, H. Searching for conjunctively defined targets. J. Exp. Psychol. Human 10, 32–39 (1984).

    CAS  Article  Google Scholar 

  8. 8

    Kristjansson, A. Reconsidering visual search. i-Perceptionhttp://dx.doi.org/10.1177/2041669515614670 (2015).

  9. 9

    Wolfe, J. M. Visual search revived: the slopes are not that slippery: a comment on Kristjansson (2015). i-Perceptionhttp://dx.doi.org/10.1177/2041669516643244 (2016).

  10. 10

    Neider, M. B. & Zelinsky, G. J. Exploring set size effects in scenes: identifying the objects of search. Vis. Cogn. 16, 1–10 (2008).

    Article  Google Scholar 

  11. 11

    Wolfe, J. M., Alvarez, G. A., Rosenholtz, R., Kuzmova, Y. I. & Sherman, A. M. Visual search for arbitrary objects in real scenes. Atten. Percept. Psychophys. 73, 1650–1671 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Kovacs, I. & Julesz, B. A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc. Natl Acad. Sci. USA 90, 7495–7497 (1993).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Taylor, S. & Badcock, D. Processing feature density in preattentive perception. Percept. Psychophys. 44, 551–562 (1988).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Wolfe, J. M. & DiMase, J. S. Do intersections serve as basic features in visual search? Perception 32, 645–656 (2003).

    PubMed  Article  Google Scholar 

  15. 15

    Buetti, S., Cronin, D. A., Madison, A. M., Wang, Z. & Lleras, A. Towards a better understanding of parallel visual processing in human vision: evidence for exhaustive analysis of visual information. J. Exp. Psychol. Gen. 145, 672–707 (2016).

    PubMed  Article  Google Scholar 

  16. 16

    Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Koehler, K., Guo, F., Zhang, S. & Eckstein, M. P. What do saliency models predict? J. Vis. 14, 14 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiol. 4, 219–227 (1985).

    CAS  Google Scholar 

  19. 19

    Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE T. Pattern Anal. 20, 1254–1259 (1998).

    Article  Google Scholar 

  20. 20

    Itti, L. & Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision. Res 40, 1489–1506 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Bruce, N. D. B., Wloka, C., Frosst, N., Rahman, S. & Tsotsos, J. K. On computational modeling of visual saliency: examining what's right, and what's left. Vision Res. 116, 95–112 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Zhang, L., Tong, M. H., Marks, T. K., Shan, H. & Cottrell, G. W. SUN: A Bayesian framework for saliency using natural statistics. J. Vis. 8, 1–20 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Henderson, J. M., Malcolm, G. L. & Schandl, C. Searching in the dark: cognitive relevance drives attention in real-world scenes. Psychon. Bull. Rev. 16, 850–856 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Tatler, B. W., Hayhoe, M. M., Land, M. F. & Ballard, D. H. Eye guidance in natural vision: reinterpreting salience. J. Vis. 11, 5 (2011).

  25. 25

    Nuthmann, A. & Henderson, J. M. Object-based attentional selection in scene viewing. J. Vis. 10, 20 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Einhäuser, W., Spain, M. & Perona, P. Objects predict fixations better than early saliency. J. Vis. 8, 18 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Stoll, J., Thrun, M., Nuthmann, A. & Einhäuser, W. Overt attention in natural scenes: objects dominate features. Vision Res. 107, 36–48 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Maunsell, J. H. & Treue, S. Feature-based attention in visual cortex. Trends Neurosci. 29, 317–322 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Nordfang, M. & Wolfe, J. M. Guided search for triple conjunctions. Atten. Percept. Psychophys. 76, 1535–1559 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Friedman-Hill, S. R. & Wolfe, J. M. Second-order parallel processing: visual search for the odd item in a subset. J. Exp. Psychol. Human 21, 531–551 (1995).

    CAS  Article  Google Scholar 

  31. 31

    Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Vickery, T. J., King, L.-W. & Jiang, Y. Setting up the target template in visual search. J. Vis. 5, 8 (2005).

  34. 34

    Neisser, U. Cognitive Psychology (Appleton-Century-Crofts, 1967).

  35. 35

    Treisman, A. & Gelade, G. A feature-integration theory of attention. Cognitive Psychol. 12, 97–136 (1980).

    CAS  Article  Google Scholar 

  36. 36

    Wolfe, J. M., Cave, K. R. & Franzel, S. L. Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychol. Human 15, 419–433 (1989).

    CAS  Article  Google Scholar 

  37. 37

    Wolfe, J. M. in Oxford Handbook of Attention (eds Nobre, A. C & Kastner, S. ) 11–55 (Oxford Univ. Press, 2014).

    Google Scholar 

  38. 38

    Wolfe, J. M. & Horowitz, T. S. What attributes guide the deployment of visual attention and how do they do it? Nat. Rev. Neurosci. 5, 495–501 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Alexander, R. G., Schmidt, J. & Zelinsky, G. J. Are summary statistics enough? Evidence for the importance of shape in guiding visual search. Vis. Cogn. 22, 595–609 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat. Neurosci. 19, 356–365 (2016).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Reijnen, E., Wolfe, J. M. & Krummenacher, J. Coarse guidance by numerosity in visual search. Atten. Percept. Psychophys. 75, 16–28 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Godwin, H. J., Hout, M. C. & Menneer, T. Visual similarity is stronger than semantic similarity in guiding visual search for numbers. Psychon. Bull. Rev. 21, 689–695 (2014).

    PubMed  Article  Google Scholar 

  43. 43

    Gao, T., Newman, G. E. & Scholl, B. J. The psychophysics of chasing: a case study in the perception of animacy. Cogn. Psychol. 59, 154–179 (2009).

    PubMed  Article  Google Scholar 

  44. 44

    Meyerhoff, H. S., Schwan, S. & Huff, M. Perceptual animacy: visual search for chasing objects among distractors. J. Exp Psychol. Human 40, 702–717 (2014).

    Article  Google Scholar 

  45. 45

    Notebaert, L., Crombez, G., Van Damme, S., De Houwer, J. & Theeuwes, J. Signals of threat do not capture, but prioritize, attention: a conditioning approach. Emotion 11, 81–89 (2011).

    PubMed  Article  Google Scholar 

  46. 46

    Wolfe, J. M. & Franzel, S. L. Binocularity and visual search. Percept. Psychophys. 44, 81–93 (1988).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Paffen, C., Hooge, I., Benjamins, J. & Hogendoorn, H. A search asymmetry for interocular conflict. Atten. Percept. Psychophys. 73, 1042–1053 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Paffen, C. L., Hessels, R. S. & Van der Stigchel, S. Interocular conflict attracts attention. Atten. Percept. Psychophys. 74, 251–256 (2012).

    PubMed  Article  Google Scholar 

  49. 49

    Zou, B., Utochkin, I. S., Liu, Y. & Wolfe, J. M. Binocularity and visual search—revisited. Atten. Percept. Psychophys. 79, 473–483 (2016).

    Article  Google Scholar 

  50. 50

    Hershler, O. & Hochstein, S . At first sight: a high-level pop out effect for faces. Vision Res. 45, 1707–1724 (2005).

    PubMed  Article  Google Scholar 

  51. 51

    Golan, T., Bentin, S., DeGutis, J. M., Robertson, L. C. & Harel, A. Association and dissociation between detection and discrimination of objects of expertise: evidence from visual search. Atten. Percept. Psychophys. 76, 391–406 (2014).

    PubMed  Article  Google Scholar 

  52. 52

    VanRullen, R. On second glance: still no high-level pop-out effect for faces. Vision Res. 46, 3017–3027 (2006).

    PubMed  Article  Google Scholar 

  53. 53

    Hershler, O. & Hochstein, S. With a careful look: still no low-level confound to face pop-out. Vision Res. 46, 3028–3035 (2006).

    PubMed  Article  Google Scholar 

  54. 54

    Frischen, A., Eastwood, J. D. & Smilek, D. Visual search for faces with emotional expressions. Psychol. Bull. 134, 662–676 (2008).

    PubMed  Article  Google Scholar 

  55. 55

    Dugué, L., McLelland, D., Lajous, M. & VanRullen, R. Attention searches nonuniformly in space and in time. Proc. Natl Acad. Sci. USA 112, 15214–15219 (2015).

    PubMed  Article  CAS  Google Scholar 

  56. 56

    Gerritsen, C., Frischen, A., Blake, A., Smilek, D. & Eastwood, J. D. Visual search is not blind to emotion. Percept. Psychophys. 70, 1047–1059 (2008).

    PubMed  Article  Google Scholar 

  57. 57

    Aks, D. J. & Enns, J. T. Visual search for size is influenced by a background texture gradient. J. Exp. Psychol. Human 22, 1467–1481 (1996).

    CAS  Article  Google Scholar 

  58. 58

    Richards, W. & Kaufman, L. ‘Centre-of-gravity’ tendencies for fixations and flow patterns. Percept. Psychophys 5, 81–84 (1969).

    Article  Google Scholar 

  59. 59

    Kuhn, G. & Kingstone, A. Look away! Eyes and arrows engage oculomotor responses automatically. Atten. Percept. Psychophys. 71, 314–327 (2009).

    PubMed  Article  Google Scholar 

  60. 60

    Rensink, R. A. in Human Attention in Digital Environments (ed. Roda, C. ) Ch 3, 63–92 (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  61. 61

    Enns, J. T. & Rensink, R. A. Influence of scene-based properties on visual search. Science 247, 721–723 (1990).

    CAS  PubMed  Article  Google Scholar 

  62. 62

    Zhang, X., Huang, J., Yigit-Elliott, S. & Rosenholtz, R. Cube search, revisited. J. Vis. 15, 9 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Wolfe, J. M. & Myers, L. Fur in the midst of the waters: visual search for material type is inefficient. J. Vis. 10, 8 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Kunar, M. A. & Watson, D. G. Visual search in a multi-element asynchronous dynamic (MAD) world. J. Exp. Psychol. Human 37, 1017–1031 (2011).

    Article  Google Scholar 

  65. 65

    Ehinger, K. A. & Wolfe, J. M. How is visual search guided by shape? Using features from deep learning to understand preattentive “shape space”. In Vision Sciences Society 16th Annual Meeting (2016); http://go.nature.com/2l1azoy

  66. 66

    Vickery, T. J., King, L. W. & Jiang, Y. Setting up the target template in visual search. J. Vis. 5, 81–92 (2005).

    PubMed  Article  Google Scholar 

  67. 67

    Biederman, I., Mezzanotte, R. J. & Rabinowitz, J. C. Scene perception: detecting and judging objects undergoing relational violations. Cognitive Psychol. 14, 143–177 (1982).

    CAS  Article  Google Scholar 

  68. 68

    Henderson, J. M. Object identification in context: the visual processing of natural scenes. Can. J. Psychol. 46, 319–341 (1992).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Henderson, J. M. & Hollingworth, A. High-level scene perception. Annu. Rev. Psychol. 50, 243–271 (1999).

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Vo, M. L. & Wolfe, J. M. Differential ERP signatures elicited by semantic and syntactic processing in scenes. Psychol. Sci. 24, 1816–1823 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  71. 71

    ‘t Hart, B. M., Schmidt, H. C. E. F., Klein-Harmeyer, I. & Einhä user, W. Attention in natural scenes: contrast affects rapid visual processing and fixations alike. Philos. T. Roy. Soc. B 368, http://dx.doi.org/10.1098/rstb.2013.0067 (2013).

  72. 72

    Henderson, J. M., Brockmole, J. R., Castelhano, M. S. & Mack, M. L. in Eye Movement Research: Insights into Mind and Brain (eds van Gompel, R., Fischer, M., Murray, W., & Hill, R. ) 537–562 (Elsevier, 2007).

    Book  Google Scholar 

  73. 73

    Rensink, R. A. Seeing, sensing, and scrutinizing. Vision Res. 40, 1469–1487 (2000).

    CAS  PubMed  Article  Google Scholar 

  74. 74

    Castelhano, M. S. & Henderson, J. M. Initial scene representations facilitate eye movement guidance in visual search. J. Exp. Psychol. Human 33, 753–763 (2007).

    Article  Google Scholar 

  75. 75

    Vo, M. L.-H. & Henderson, J. M. The time course of initial scene processing for eye movement guidance in natural scene search. J. Vis. 10, 14 (2010).

    PubMed  Article  Google Scholar 

  76. 76

    Hollingworth, A. Two forms of scene memory guide visual search: memory for scene context and memory for the binding of target object to scene location. Vis. Cogn. 17, 273–291 (2009).

    Article  Google Scholar 

  77. 77

    Oliva, A. in Neurobiology of Attention (eds Itti, L., Rees, G., & Tsotsos, J. ) 251–257 (Academic Press, 2005).

  78. 78

    Greene, M. R. & Oliva, A. The briefest of glances: the time course of natural scene understanding. Psychol. Sci. 20, 464–472 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  79. 79

    Castelhano, M. & Heaven, C. Scene context influences without scene gist: eye movements guided by spatial associations in visual search. Psychon. B. Rev. 18, 890–896 (2011).

    Article  Google Scholar 

  80. 80

    Malcolm, G. L. & Henderson, J. M. Combining top-down processes to guide eye movements during real-world scene search. J. Vis. 10, 1–11 (2010).

    PubMed  Article  Google Scholar 

  81. 81

    Torralba, A., Oliva, A., Castelhano, M. S. & Henderson, J. M. Contextual guidance of eye movements and attention in real-world scenes: the role of global features on object search. Psychol. Rev. 113, 766–786 (2006).

    PubMed  Article  Google Scholar 

  82. 82

    Vo, M. L. & Wolfe, J. M. When does repeated search in scenes involve memory? Looking at versus looking for objects in scenes. J. Exp. Psychol. Human 38, 23–41 (2012).

    Article  Google Scholar 

  83. 83

    Vo, M. L.-H. & Wolfe, J. M. The role of memory for visual search in scenes. Ann. NY Acad. Sci. 1339, 72–81 (2015).

    Article  Google Scholar 

  84. 84

    Hillstrom, A. P., Scholey, H., Liversedge, S. P. & Benson, V. The effect of the first glimpse at a scene on eye movements during search. Psychon. B. Rev. 19, 204–210 (2012).

    Article  Google Scholar 

  85. 85

    Hwang, A. D., Wang, H.-C. & Pomplun, M. Semantic guidance of eye movements in real-world scenes. Vision Res. 51, 1192–1205 (2011).

    PubMed  Article  Google Scholar 

  86. 86

    Watson, D. G. & Humphreys, G. W. Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychol. Rev. 104, 90–122 (1997).

    CAS  PubMed  Article  Google Scholar 

  87. 87

    Donk, M. & Theeuwes, J. Prioritizing selection of new elements: bottom-up versus top-down control. Percept. Psychophys. 65, 1231–1242 (2003).

    PubMed  Article  Google Scholar 

  88. 88

    Maljkovic, V. & Nakayama, K. Priming of popout: I. Role of features. Mem. Cognition 22, 657–672 (1994).

    CAS  Article  Google Scholar 

  89. 89

    Lamy, D., Zivony, A. & Yashar, A. The role of search difficulty in intertrial feature priming. Vision Res. 51, 2099–2109 (2011).

    PubMed  Article  Google Scholar 

  90. 90

    Wolfe, J., Horowitz, T., Kenner, N. M., Hyle, M. & Vasan, N. How fast can you change your mind? The speed of top-down guidance in visual search. Vision Res. 44, 1411–1426 (2004).

    PubMed  Article  Google Scholar 

  91. 91

    Wolfe, J. M., Butcher, S. J., Lee, C. & Hyle, M. Changing your mind: on the contributions of top-down and bottom-up guidance in visual search for feature singletons. J. Exp. Psychol. Human 29, 483–502 (2003).

    Article  Google Scholar 

  92. 92

    Kristjansson, A. Simultaneous priming along multiple feature dimensions in a visual search task. Vision Res. 46, 2554–2570 (2006).

    PubMed  Article  Google Scholar 

  93. 93

    Kristjansson, A. & Driver, J. Priming in visual search: separating the effects of target repetition, distractor repetition and role-reversal. Vision Res. 48, 1217–1232 (2008).

    PubMed  Article  Google Scholar 

  94. 94

    Sigurdardottir, H. M., Kristjansson, A. & Driver, J. Repetition streaks increase perceptual sensitivity in visual search of brief displays. Vis. Cogn. 16, 643–658 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  95. 95

    Kruijne, W. & Meeter, M. Long-term priming of visual search prevails against the passage of time and counteracting instructions. J. Exp. Psychol. Learn. 42, 1293–1303 (2016).

    Article  Google Scholar 

  96. 96

    Chun, M. & Jiang, Y. Contextual cuing: implicit learning and memory of visual context guides spatial attention. Cogn. Psychol. 36, 28–71 (1998).

    CAS  PubMed  Article  Google Scholar 

  97. 97

    Chun, M. M. & Jiang, Y. Top-down attentional guidance based on implicit learning of visual covariation. Psychol. Sci. 10, 360–365 (1999).

    Article  Google Scholar 

  98. 98

    Kunar, M. A., Flusberg, S. J., Horowitz, T. S. & Wolfe, J. M. Does contextual cueing guide the deployment of attention? J. Exp. Psychol. Human 33, 816–828 (2007).

    Article  Google Scholar 

  99. 99

    Geyer, T., Zehetleitner, M. & Muller, H. J. Contextual cueing of pop-out visual search: when context guides the deployment of attention. J. Vis. 10, 20 (2010).

    PubMed  Article  Google Scholar 

  100. 100

    Schankin, A. & Schubo, A. Contextual cueing effects despite spatially cued target locations. Psychophysiology 47, 717–727 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. 101

    Schankin, A., Hagemann, D. & Schubo, A. Is contextual cueing more than the guidance of visual-spatial attention? Biol. Psychol. 87, 58–65 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Peterson, M. S. & Kramer, A. F. Attentional guidance of the eyes by contextual information and abrupt onsets. Percept. Psychophys. 63, 1239–1249 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103

    Tseng, Y. C. & Li, C. S. Oculomotor correlates of context-guided learning in visual search. Percept. Psychophys. 66, 1363–1378 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Wolfe, J. M., Klempen, N. & Dahlen, K. Post-attentive vision. J. Exp. Psychol. Human 26, 693–716 (2000).

    CAS  Article  Google Scholar 

  105. 105

    Brockmole, J. R. & Henderson, J. M. Using real-world scenes as contextual cues for search. Vis. Cogn. 13, 99–108 (2006).

    Article  Google Scholar 

  106. 106

    Hollingworth, A. & Henderson, J. M. Accurate visual memory for previously attended objects in natural scenes. J. Exp. Psychol. Human 28, 113–136 (2002).

    Article  Google Scholar 

  107. 107

    Flowers, J. H. & Lohr, D. J. How does familiarity affect visual search for letter strings? Percept. Psychophys. 37, 557–567 (1985).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Krueger, L. E. The category effect in visual search depends on physical rather than conceptual differences. Percept. Psychophys. 35, 558–564 (1984).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109

    Frith, U. A curious effect with reversed letters explained by a theory of schema. Percept. Psychophys. 16, 113–116 (1974).

    Article  Google Scholar 

  110. 110

    Wang, Q., Cavanagh, P. & Green, M. Familiarity and pop-out in visual search. Percept. Psychophy. 56, 495–500 (1994).

    CAS  Article  Google Scholar 

  111. 111

    Qin, X. A., Koutstaal, W. & Engel, S. The hard-won benefits of familiarity on visual search — familiarity training on brand logos has little effect on search speed and efficiency. Atten. Percept. Psychophys. 76, 914–930 (2014).

    PubMed  Article  Google Scholar 

  112. 112

    Fan, J. E. & Turk-Browne, N. B. Incidental biasing of attention from visual long-term memory. J. Exp. Psychol. Learn. 42, 970–977 (2015).

    Article  Google Scholar 

  113. 113

    Huang, L. Familiarity does not aid access to features. Psychon. B. Rev. 18, 278–286 (2011).

    Article  Google Scholar 

  114. 114

    Wolfe, J. M., Boettcher, S. E. P., Josephs, E. L., Cunningham, C. A. & Drew, T. You look familiar, but I don't care: lure rejection in hybrid visual and memory search is not based on familiarity. J. Exp. Psychol. Human 41, 1576–1587 (2015).

    Article  Google Scholar 

  115. 115

    Anderson, B. A., Laurent, P. A. & Yantis, S. Value-driven attentional capture. Proc. Natl Acad. Sci. USA 108, 10367–10371 (2011).

    CAS  PubMed  Article  Google Scholar 

  116. 116

    MacLean, M. & Giesbrecht, B. Irrelevant reward and selection histories have different influences on task-relevant attentional selection. Atten. Percept. Psychophys. 77, 1515–1528 (2015).

    PubMed  Article  Google Scholar 

  117. 117

    Anderson, B. A. & Yantis, S. Persistence of value-driven attentional capture. J. Exp. Psychol. Human 39, 6–9 (2013).

    Article  Google Scholar 

  118. 118

    Moran, R., Zehetleitner, M. H., Mueller, H. J. & Usher, M. Competitive guided search: meeting the challenge of benchmark RT distributions. J. Vis. 13, 24 (2013).

    PubMed  Article  Google Scholar 

  119. 119

    Wolfe, J. M. in Integrated Models of Cognitive Systems (ed. Gray, W. ) 99–119 (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  120. 120

    Proulx, M. J. & Green, M. Does apparent size capture attention in visual search? Evidence from the Müller–Lyer illusion. J. Vis. 11, 21 (2011).

    PubMed  Article  Google Scholar 

  121. 121

    Kunar, M. A. & Watson, D. G. When are abrupt onsets found efficiently in complex visual search? Evidence from multielement asynchronous dynamic search. J. Exp. Psychol. Human 40, 232–252 (2014).

    Article  Google Scholar 

  122. 122

    Shirama, A. Stare in the crowd: frontal face guides overt attention independently of its gaze direction. Perception 41, 447–459 (2012).

    Article  Google Scholar 

  123. 123

    von Grunau, M. & Anston, C. The detection of gaze direction: a stare-in-the-crowd effect. Perception 24, 1297–1313 (1995).

    CAS  PubMed  Article  Google Scholar 

  124. 124

    Enns, J. T. & MacDonald, S. C. The role of clarity and blur in guiding visual attention in photographs. J. Exp. Psychol. Human 39, 568–578 (2013).

    Article  Google Scholar 

  125. 125

    Li, H., Bao, Y., Poppel, E. & Su, Y. H. A unique visual rhythm does not pop out. Cogn. Process. 15, 93–97 (2014).

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeremy M. Wolfe.

Ethics declarations

Competing interests

J.M.W occasionally serves as an expert witness or consultant (paid or unpaid) on the applications of visual search to topics from legal disputes (for example, how could that truck have hit that clearly visible motorcycle?) to consumer behaviour (for example, how could we redesign this shelf to attract more attention to our product?).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wolfe, J., Horowitz, T. Five factors that guide attention in visual search. Nat Hum Behav 1, 0058 (2017). https://doi.org/10.1038/s41562-017-0058

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing