Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic evidence of assortative mating in humans

Abstract

In human populations, assortative mating is almost univer­sally positive, with similarities between partners for quantit­ative phenotypes16, common disease risk1,3,710, beha­vi­our6,11, social factors1214 and personality4,5,11. The causes and genetic consequences of assortative mating remain un­re­solved because partner similarity can arise from different mechanisms: phenotypic assortment based on mate choice15,16, partner interaction and convergence in phenotype over time14,17, or social homogamy where individuals pair according to social or environmental background. Here, we present theory and an analytical approach to test for genetic evidence of assortative mating and find a correlation in genetic value among partners for a range of phenotypes. Across three independent samples of 24,662 spousal pairs in total, we infer a correlation at trait-associated loci between partners for height (0.200, 0.004 standard error, SE) that matched the phenotypic correlation (0.201, 0.004 SE), and a correlation at trait-associated loci for BMI (0.143, 0.007 SE) that was significantly lower than the phenotypic value (0.228, 0.004 SE). We extend our analysis to the UK Biobank study (7,780 pairs), finding evidence of a correlation at trait-associated loci for waist-to-hip ratio (0.101, 0.041 SE), systolic blood pressure (0.138, 0.064 SE) and educational attainment (0.654, 0.014 SE). Our results imply that mate choice, combined with widespread pleiotropy among traits, affects the genomic architecture of traits in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assortative mating for height and BMI creates a correlation at trait-associated loci among partners.
Figure 2: Genetic evidence for assortative mating across a range of phenotypes in the UK Biobank study.

Similar content being viewed by others

References

  1. Zietsch, B. P., Verweij, K. J. H., Heath, A. C. & Martin, N. G. Variation in human mate choice: simultaneously investigating heritability, parental influence, sexual imprinting, and assortative mating. Am. Nat. 177, 605–616 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Silventoinen, K., Kaprio, J., Lahelma, E., Viken, R. J. & Rose, R. J. Assortative mating by body height and BMI: Finnish twins and their spouses. Am. J. Hum. Biol. 15, 620–627 (2003).

    Article  PubMed  Google Scholar 

  3. Maes, H., Neale, M. & Eaves, L. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Keller, M. C. et al. The genetic correlation between height and IQ: Shared genes or assortative mating? PLoS Genet. 9, e1003451 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eaves, L. J. Assortative mating and intelligence: An analysis of pedigree data. Heredity (Edinb.) 30, 199–210 (1973).

    Article  CAS  PubMed  Google Scholar 

  6. Eaves, L. J. & Heath, A. C. Detection of the effects of asymmetric assortative mating. Nature 289, 205–206 (1981).

    Article  Google Scholar 

  7. Vandenberg, S. G. Assortative mating, or who marries whom? Behav. Genet. 2, 127–157 (1972).

    Article  Google Scholar 

  8. Hippisley-Cox, J. Married couples’ risk of same disease: Cross sectional study. Br. Med. J. 325, 636 (2002).

    Article  Google Scholar 

  9. Willemsen, G. Assortative mating may explain spouses’ risk of same disease. Br. Med. J. 326, 396a–396 (2003).

    Article  Google Scholar 

  10. Ajslev, T. A. et al. Assortative marriages by body mass index have increased simultaneously with the obesity epidemic. Front. Genet. 3, 125 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eaves, L. et al. Comparing the biological and cultural inheritance of personality and social attitudes in the Virginia 30,000 study of twins and their relatives. Twin Res. 2, 62–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Heath, A. C. et al. No decline in assortative mating for educational level. Behav. Genet. 15, 349–369 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Heath, A. C. & Eaves, L. J. Resolving the effects of phenotype and social background on mate selection. Behav. Genet. 15, 15–30 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Heath, A. C., Eaves, L. J., Nance, W. E. & Corey, L. A. Social inequality and assortative mating: Cause or consequence? Behav. Genet. 17, 9–17 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Falconer, D. & Mackay, T. F. C. Introduction to Quantitative Genetics (Pearson Prentice Hall, 1996).

    Google Scholar 

  16. Fisher, R. A. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52, 399–433 (1918).

    Article  Google Scholar 

  17. Nance, W. E., Corey, L. A., Rose, R. J. & Eaves, L. J. Relevance of the marriages of twins to the causal analysis of nonrandom mating. Prog. Clin. Biol. Res. 69 (Pt B), 61–71 (1981).

    PubMed  Google Scholar 

  18. Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory (Harper and Row, 1970).

    Google Scholar 

  19. Wilson, S. R. The correlation between relatives under the multifactorial model with assortative mating. Ann. Hum. Genet. 37, 189–204 (1973).

    Article  CAS  PubMed  Google Scholar 

  20. Wright, S. Systems of mating. III. Assortative mating based on somatic resemblance. Genetics 6, 144–161 (1921).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eaves, L. J., Last, K., Martin, N. G. & Jinks, J. L. A progressive approach to non-additivity and genotype-environmental covariance in the analysis of human differences. Br. J. Math. Stat. Psychol. 30, 1–42 (1977).

    Article  Google Scholar 

  22. Pearson, K. & Lee, A. On the laws of inheritance in man I. Inheritance of physical characters. Biometrika 2, 357–462 (1903).

    Article  Google Scholar 

  23. Galton, F. Measurement of character. Fortn. Rev. 36, 179–185 (1884).

    Google Scholar 

  24. Falconer, D. S. Introduction to Quantitative Genetics (Ronald, 1960).

    Google Scholar 

  25. Zou, J. Y. et al. Genetic and socioeconomic study of mate choice in Latinos reveals novel assortment patterns. Proc. Natl Acad. Sci. USA 112, 13621–13626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guo, G., Wang, L., Liu, H. & Randall, T. Genomic assortative mating in marriages in the United States. PLoS One 9, e112322 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Domingue, B. W., Fletcher, J., Conley, D. & Boardman, J. D. Genetic and educational assortative mating among US adults. Proc. Natl Acad. Sci. USA 111, 7996–8000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abdellaoui, A., Verweij, K. J. H. & Zietsch, B. P. No evidence for genetic assortative mating beyond that due to population stratification. Proc. Natl Acad. Sci. USA 111, E4137 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdellaoui, A. et al. Association between autozygosity and major depression: stratification due to religious assortment. Behav. Genet. 43, 455–467 (2013).

    Article  PubMed  Google Scholar 

  30. Abdellaoui, A. et al. Educational attainment influences levels of homozygosity through migration and assortative mating. PLoS One 10, e0118935 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sebro, R., Hoffman, T. J., Lange, C., Rogus, J. J. & Risch, N. J. Testing for non-random mating: Evidence for ancestry-related assortative mating in the Framingham heart study. Genet. Epidemiol. 34, 674–679 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tenesa, A., Rawlik, K., Navarro, P. & Canela-Xandri, O. Genetic determination of height-mediated mate choice. Genome Biol. 16, 269 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. de Los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C. & Sorensen, D. Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 9, e1003608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goddard, M. E., Wray, N. R., Verbyla, K. & Visscher, P. M. Estimating effects and making predictions from genome-wide marker data. Stat. Sci. 24, 517–529 (2009).

    Article  MathSciNet  Google Scholar 

  37. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Zheng, H.-F. et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526, 112–117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. International Consortium for Blood Pressure Genome-Wide Association Studies et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

    Article  Google Scholar 

  40. Heid, I. M. et al. Meta-analysis identifies 13 new loci associated with waist–hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vattikuti, S., Guo, J. & Chow, C. C. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 8, e1002637 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340, 1467–1471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits. (Sinauer, 1998).

    Google Scholar 

  46. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, e1000993 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tung, J. Y. et al. Efficient replication of over 180 genetic associations with self-reported medical data. PLoS One 6, e23473 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haseman, J. K. & Elston, R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 3–19 (1972).

    Article  CAS  PubMed  Google Scholar 

  52. Visscher, P. M. et al. Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Silventoinen, K., Kaprio, J. & Lahelma, E. Genetic and environmental contributions to the association between body height and educational attainment: A study of adult Finnish twins. Behav. Genet. 30, 477–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Lin, D.-Y. & Sullivan, P. F. Meta-analysis of genome-wide association studies with overlapping subjects. Am. J. Hum. Genet. 85, 862–872 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The University of Queensland group is supported by the Australian National Health and Medical Research Council (NHMRC grants 1078037, 1048853 and 1050218), the Australian Research Council (Discovery Project 160103860) and the National Institute of Health (NIH grants R21ESO25052-01, R01AG042568 and PO1GMO99568). J.Y. is supported by a Charles and Sylvia Viertel Senior Medical Research Fellowship. We thank the participants of the cohort studies, as well as C. Haley and our colleagues at the Program in Complex Trait Genomics, for comments and suggestions. 23andMe cohort thank the research participants and employees of 23andMe. This work was supported by the National Human Genome Research Institute of the NIH (grant number R44HG006981). The UK Biobank research was conducted using the UK Biobank Resource under project 12514. TWINGENE was supported by the Swedish Research Council (M-2005-1112), GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH DK U01-066134, the Swedish Foundation for Strategic Research, and the Heart and Lung Foundation grant no. 20070481. The Atherosclerosis Risk in Communities Study (ARIC) is a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). K.E.N and M.G. are supported by NIDDK R01 DK089256. We thank the staff and participants of the ARIC study for their contributions. Generation and management of GWAS genotype data for the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research (grant 175.010.2007.006), the Economic Structure Enhancing Fund of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces, the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation. The authors acknowledge the services of the LifeLines Cohort Study, the contributing research centres delivering data to LifeLines, and all the study participants. Minnesota Center for Twin and Family Research (MCTFR) is funded by US Public Health Service grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367, AA11886), National Institute on Drug Abuse (DA05147, DA13240, DA024417, DA036216) and National Institute of Mental Health (MH066140). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.R.R., J.Y. and P.M.V. conceived and designed the study. M.R.R., A.K. and M.G. analysed the data. M.R.R. devised and performed the simulations. A.A.E.V., W.J.P., A.A., B.Z., S.M. provided statistical support. 23andMe Inc., The LifeLines cohort, GIANT consortium, G.W.M., N.G.M., M.L., P.L., D.C., J.V.V.O., M.B.M., H.S., W.G.I., P.K.E.M, N.L.P, M.McG. and K.E.N. provided study oversight, sample collection and management. M.R.R. and P.M.V. derived the theory and wrote the manuscript. All collaborators reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Matthew R. Robinson or Peter M. Visscher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–9, Supplementary Table 1, Supplementary Note, Supplementary Methods, Supplementary References, Author Lists (PDF 3325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, M., Kleinman, A., Graff, M. et al. Genetic evidence of assortative mating in humans. Nat Hum Behav 1, 0016 (2017). https://doi.org/10.1038/s41562-016-0016

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-016-0016

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing