Explaining the prevalence, scaling and variance of urban phenomena


The prevalence of many urban phenomena changes systematically with population size1. We propose a theory that unifies models of economic complexity2,3 and cultural evolution4 to derive urban scaling. The theory accounts for the difference in scaling exponents and average prevalence across phenomena, as well as the difference in the variance within phenomena across cities of similar size. The central ideas are that a number of necessary complementary factors must be simultaneously present for a phenomenon to occur, and that the diversity of factors is logarithmically related to population size. The model reveals that phenomena that require more factors will be less prevalent, scale more superlinearly and show larger variance across cities of similar size. The theory applies to data on education, employment, innovation, disease and crime, and it entails the ability to predict the prevalence of a phenomenon across cities, given information about the prevalence in a single city.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Four facts across ten different urban phenomena that we seek to explain.
Figure 2: Relationship between inferred values of parameters G, H and G H ln N , across 43 different urban phenomena.
Figure 3: Predictions.


  1. 1

    Bettencourt, L. M. A., Lobo, J., Helbing, D., Kìhnert, C. & West, G. B. Growth, innovation, scaling, and the pace of life in cities. Proc. Natl Acad. Sci. USA 104, 7301–7306 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Hidalgo, C. A. & Hausmann, R. The building blocks of economic complexity. Proc. Natl Acad. Sci. USA 106, 10570–10575 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Hausmann, R. & Hidalgo, C. A. The network structure of economic ouput. J. Econ. Growth 16, 309–342 (2011).

    Article  Google Scholar 

  4. 4

    Henrich, J. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses—the Tasmanian case. Am. Antiq. 69, 197–214 (2004).

    Article  Google Scholar 

  5. 5

    Schroeder, M. Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Freeman, 1991; republished Dover, 2009).

  6. 6

    Sornette, D. Critical Phenomena in Natural Sciences—Chaos, Fractals, Selforganization and Disorder: Concepts and Tools 2nd edn (Springer, 2006).

    Google Scholar 

  7. 7

    West, G. B. & Brown, J. H. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005).

    Article  Google Scholar 

  8. 8

    Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    CAS  Article  Google Scholar 

  9. 9

    McNerney, J., Farmer, J. D., Redner, S. & Trancik, J. E. Role of design complexity in technology improvement. Proc. Natl Acad. Sci. USA 108, 9008–9013 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Batty, M. The size, scale, and shape of cities. Science 319, 769 (2008).

    CAS  Article  Google Scholar 

  11. 11

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation networks. Nature 399, 130–132 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Arbesman, S., Kleinberg, J. M. & Strogatz, S. H. Superlinear scaling for innovation in cities. Phys. Rev. E 79, 016115 (2009).

    Article  Google Scholar 

  14. 14

    Pan, W., Ghoshal, G., Krumme, C., Cebrian, M. & Pentland, A. Urban characteristics attributable to density-driven tie formation. Nat. Commun. 4, 1961 (2013).

    Article  Google Scholar 

  15. 15

    Bettencourt, L. M. A. The origins of scaling in cities. Science 340, 1438 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Yakubo, K., Saijo, Y. & Korošak, D. Superlinear and sublinear urban scaling in geographical networks modeling cities. Phys. Rev. E 90, 022803 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Banavar, J. R. et al. A general basis for quarter-power scaling in animals. Proc. Natl Acad. Sci. USA 107, 15816–15820 (2010).

    CAS  Article  Google Scholar 

  18. 18

    McMahon, T. Size and shape in biology. Science 179, 1201–1204 (1973).

    CAS  Article  Google Scholar 

  19. 19

    West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Samaniego, H. & Moses, M. E. Cities as organisms: allometric scaling of urban road networks. J. Transp. Land Use 1, 21–39 (2008).

    Article  Google Scholar 

  21. 21

    Hidalgo, C. A., Klinger, B., Barabasi, A.-L. & Hausmann, R. The product space conditions the development of nations. Science 317, 482–487 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Klimek, P., Hausmann, R. & Thurner, S. Empirical confirmation of creative destruction from world trade data. PLoS ONE 7, 1–9 (2012).

    Article  Google Scholar 

  23. 23

    Henrich, J. & Boyd, R. On modeling cognition and culture: why cultural evolution does not require replication of representations. J. Cogn. Culture 2, 87–112 (2002).

    Article  Google Scholar 

  24. 24

    Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene demography and the appearance of modern human behavior. Science 324, 1298–1301 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Kline, M. A. & Boyd, R. Population size predicts technological complexity in oceania. Proc. R. Soc. Lond. B 277, 2559–2564 (2010).

    Article  Google Scholar 

  26. 26

    Mesoudi, A. Variable cultural acquisition costs constrain cumulative cultural evolution. PLoS ONE 6, e18239 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Derex, M., Beugin, M.-P., Godelle, B. & Raymond, M. Experimental evidence for the influence of group size on cultural complexity. Nature 503, 389–391 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Kempe, M. & Mesoudi, A. An experimental demonstration of the effect of group size on cultural accumulation. Evol. Hum. Behav. 35, 285–290 (2014).

    Article  Google Scholar 

  29. 29

    Collard, M., Ruttle, A., Buchanan, B. & OBrien, M. J. Population size and cultural evolution in nonindustrial food-producing societies. PLoS ONE 8, e72628 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Bromham, L., Hua, X., Fitzpatrick, T. G. & Greenhill, S. J. Rate of language evolution is affected by population size. Proc. Natl Acad. Sci. USA 112, 2097–2102 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Brummitt, C. D., Gomez-Lievano, A., Goudemand, N. & Haslam, G. Hunting for keys to innovation: the diversity and mixing of occupations do not explain a city’s patent and economic productivity. In Proc. Complex Systems Summer School Santa Fe Institute 1–13 (2012); https://www.santafe.edu/engage/learn/resources/csss-2012-proceedings

  32. 32

    Youn, H. et al. Scaling and universality in urban economic diversification. J. R. Soc. Interf. 13, http://dx.doi.org/10.1098/rsif.2015.0937 (2016).

    Article  Google Scholar 

  33. 33

    Bettencourt, L. M., Samaniego, H. & Youn, H. Professional diversity and the productivity of cities. Sci. Rep. 4, 5393 (2014).

    CAS  Article  Google Scholar 

  34. 34

    Auerswald, P., Kauffman, S., Lobo, J. & Shell, K. The production recipes approach to modeling technological innovation: an application to learning by doing. J. Econ. Dynam. Control 24, 389–450 (2000).

    Article  Google Scholar 

  35. 35

    Amabile, T. Creativity in Context (Westview, 1996).

    Google Scholar 

  36. 36

    Athens, L. H. The Creation of Dangerous Violent Criminals (Univ. Illinois Press, 1992).

    Google Scholar 

  37. 37

    Weitzman, M. L. Recombinant growth. Q. J. Econ. 113, 331–360 (1998).

    Article  Google Scholar 

  38. 38

    Gomez-Lievano, A., Youn, H. & Bettencourt, L. M. A. The statistics of urban scaling and their connection to Zipf’s Law. PLoS ONE 7, e40393 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Shalizi, C. R. Scaling and hierarchy in urban economies. Preprint at http://arxiv.org/abs/1102.4101 (2011).

  40. 40

    Bettencourt, L. M. A., Lobo, J. & Youn, H. The hypothesis of urban scaling: formalization, implications and challenges. Preprint at http://arxiv.org/abs/1301.5919v1 (2013).

  41. 41

    Mantovani, M. C., Ribeiro, H. V., Lenzi, E. K., Picoli, S. & Mendes, R. S. Engagement in the electoral processes: scaling laws and the role of political positions. Phys. Rev. E 88, 024802 (2013).

    CAS  Article  Google Scholar 

  42. 42

    Arcaute, E. et al. Constructing cities, deconstructing scaling laws. J. R. Soc. Interf. 12, 20140745 (2014).

    Article  Google Scholar 

  43. 43

    Patterson-Lomba, O., Goldstein, E., Gómez-Liévano, A., Castillo-Chavez, C. & Towers, S. Per capita incidence of sexually transmitted infections increases systematically with urban population size: a cross-sectional study. Sex. Transm. Infect. 91, 610–614 (2015).

    Article  Google Scholar 

  44. 44

    Neffke, F. & Henning, M. Skill relatedness and firm diversification. Strateg. Manag. J. 34, 297–316 (2013).

    Article  Google Scholar 

  45. 45

    Duong, T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).

    Article  Google Scholar 

  46. 46

    Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2012 (US Department of Health and Human Services, 2013).

  47. 47

    Florida, R. The Rise of the Creative Class: And How It’s Transforming Work, Leisure, Community and Everyday Life (Basic Books, 2004).

    Google Scholar 

Download references


We thank A.-L. Barabasi, J. Lobo, L. M. A. Bettencourt, F. Neffke, S. Valverde, D. Diodato and C. Brummitt for their comments on this work. We also thank M. Akmanalp and W. Strimling for their suggestions about aesthetics. This work was funded by the MasterCard Center for Inclusive Growth, and Alejandro Santo Domingo. O.P-L. acknowledges support by National Institutes of Health (NIH) grant T32AI007358-26. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information




A.G-L. and O.P-L. collected the data, and conceived and designed the study. A.G-L. conducted the analyses. A.G-L. and R.H. developed the model. A.G-L., O.P-L. and R.H. wrote the manuscript. All three authors reviewed and approved the paper.

Corresponding author

Correspondence to Andres Gomez-Lievano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Discussion, Supplementary Figures 1–7, Supplementary Data, Supplementary References. (PDF 2714 kb)

Supplementary Data

The file contains a set of single files, one for each urban phenomenon we studied (except for Sexually Transmitted Diseases, which we kept in a separate file), a README file, and an Excel file, which lists the different phenomena we used in our analysis with other parameters and field descriptions. (ZIP 364 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gomez-Lievano, A., Patterson-Lomba, O. & Hausmann, R. Explaining the prevalence, scaling and variance of urban phenomena. Nat Hum Behav 1, 0012 (2017). https://doi.org/10.1038/s41562-016-0012

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing