Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capture of an ancient Charon around Pluto

Abstract

Pluto and Charon are the largest binary system in the known population of trans-Neptunian objects in the outer Solar System. Their shared external orbital axis suggests a linked evolutionary history and collisional origin. Their radii, ~1,200 km and ~600 km, respectively, and Charon’s wide circular orbit of about 16 Pluto radii require a formation mechanism that places a large mass fraction into orbit, with sufficient angular momentum to drive tidal orbital expansion. Here we numerically model the collisional capture of Charon by Pluto using simulations that include material strength. In our simulations, friction distributes impact momentum, leading Charon and Pluto to become temporarily connected, instead of merging, for impacts aligned with the target’s rotation. In this ‘kiss-and-capture’ regime, coalescence of the bodies is prevented by strength. For a prograde target rotation consistent with the system angular momentum, Charon is then tidally decoupled and raised into a near-circular orbit from which it migrates outwards to distances consistent with its present orbit. Charon is captured relatively intact in this scenario, retaining its core and most of its mantle, which implies that Charon could be as ancient as Pluto.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contrast in outcomes for a potential Charon-capturing collision when implementing strength.
Fig. 2: Time series of a potential Charon-capturing collision at 45°.
Fig. 3: Orbital and thermal evolution of Pluto and Charon during and after kiss-and-capture.
Fig. 4: Time series and orbital evolution of a potential Charon-capturing collision with more Pluto- and Charon-like initial bodies.

Similar content being viewed by others

Data availability

All model parameters used to run our simulations are available in the main text and Supplementary Information. The full video of the simulation shown in Figs. 1b and 2 is included as Supplementary Video 1, with the input file and first and last dumps uploaded to the Harvard Dataverse (https://doi.org/10.7910/DVN/ARMAJ1). A lower-resolution video of the simulation shown in Fig. 4 is included as Supplementary Video 2, with the input file and first and last dumps found in the above repository; the repository also hosts csv files containing the processed orbital and momentum data shown in Figs. 3 and 4. Additional data, such as additional intermediate dump files from simulations, are available from the corresponding author on reasonable request.

Code availability

The sphlatch SPH code is available via GitHub at https://github.com/andreasreufer/sphlatch. The algorithm for implementing strength in sphlatch is completely described in section 2 of ref. 12.

References

  1. Canup, R. M. et al. Origin of the moon. Rev. Mineral. Geochem. 89, 53–102 (2023).

    Article  Google Scholar 

  2. Brown, M. E. & Butler, B. J. Masses and densities of dwarf planet satellites measured with ALMA. Planet. Sci. J. 4, 193 (2023).

    Article  Google Scholar 

  3. Arakawa, S., Hyodo, R. & Genda, H. Early formation of moons around large trans-Neptunian objects via giant impacts. Nat. Astron. 3, 802–807 (2019).

    Article  Google Scholar 

  4. Brown, M. E. et al. Satellites of the largest Kuiper belt objects. Astrophys. J. 639, L43 (2006).

    Article  Google Scholar 

  5. Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B. & Grundy, W. M. Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nat. Astron. 3, 808–812 (2019).

    Article  Google Scholar 

  6. Stern, S. A., Grundy, W. M., McKinnon, W. B., Weaver, H. A. & Young, L. A. The Pluto system after New Horizons. Annu. Rev. Astron. Astrophys. 56, 357–392 (2018).

    Article  Google Scholar 

  7. McKinnon, W. B. On the origin of the Pluto–Charon binary. Astrophys. J. 344, L41–L44 (1989).

    Article  Google Scholar 

  8. Canup, R. M. A giant impact origin of Pluto–Charon. Science 307, 546–550 (2005).

    Article  CAS  Google Scholar 

  9. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article  CAS  Google Scholar 

  10. Canup, R. M. On a giant impact origin of Charon, Nix, and Hydra. Astron. J. 141, 35 (2011).

    Article  Google Scholar 

  11. Arakawa, S., Hyodo, R., Shoji, D. & Genda, H. Tidal evolution of the eccentric moon around dwarf planet (225088) Gonggong. Astron. J. 162, 226 (2021).

    Article  CAS  Google Scholar 

  12. Emsenhuber, A., Jutzi, M. & Benz, W. SPH calculations of Mars-scale collisions: the role of the equation of state, material rheologies, and numerical effects. Icarus 301, 247–257 (2018).

    Article  Google Scholar 

  13. Emsenhuber, A. et al. A new database of giant impacts over a wide range of masses and with material strength: a first analysis of outcomes. Planet. Sci. J. 5, 59 (2024).

    Article  Google Scholar 

  14. Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).

    Article  CAS  Google Scholar 

  15. Wakita, S. & Sekiya, M. Thermal evolution of icy planetesimals in the solar nebula. Earth Planets Space 63, 1193–1206 (2011).

    Article  CAS  Google Scholar 

  16. Castillo-Rogez, J. et al. Compositions and interior structures of the large moons of Uranus and implications for future spacecraft observations. J. Geophys. Res. Planets 128, e2022JE007432 (2023).

    Article  Google Scholar 

  17. Denton, C. A. et al. Pluto’s antipodal terrains imply a thick subsurface ocean and hydrated core. Geophys. Res. Lett. 48, e2020GL091596 (2021).

    Article  Google Scholar 

  18. Kamata, S. et al. Pluto’s ocean is capped and insulated by gas hydrates. Nat. Geosci. 12, 407–410 (2019).

    Article  CAS  Google Scholar 

  19. Barucci, M. A. The Solar System Beyond Neptune (Univ. Arizona Press, 2008).

  20. Stern, S. et al. Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper belt object. Science 364, eaaw9771 (2019).

    Article  CAS  Google Scholar 

  21. Amarante, A. & Winter, O. Surface dynamics, equilibrium points and individual lobes of the Kuiper belt object (486958) Arrokoth. Mon. Not. R. Astron. Soc. 496, 4154–4173 (2020).

    Article  Google Scholar 

  22. Fraser, W. C. et al. All planetesimals born near the Kuiper belt formed as binaries. Nat. Astron. 1, 0088 (2017).

    Article  Google Scholar 

  23. Bierson, C. J., Nimmo, F. & Stern, S. A. Evidence for a hot start and early ocean formation on Pluto. Nat. Geosci. 13, 468–472 (2020).

    Article  CAS  Google Scholar 

  24. Robuchon, G. & Nimmo, F. Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean. Icarus 216, 426–439 (2011).

    Article  Google Scholar 

  25. Bierson, C. & Nimmo, F. Using the density of Kuiper belt objects to constrain their composition and formation history. Icarus 326, 10–17 (2019).

    Article  CAS  Google Scholar 

  26. Nimmo, F. & McKinnon, W. B. in The Pluto System After New Horizons (eds Moore, J. M. et al.) 89–103 (Univ. Arizona Press, 2021).

  27. Rhoden, A. R., Rudolph, M. L. & Manga, M. The challenges of driving Charon’s cryovolcanism from a freezing ocean. Icarus 392, 115391 (2023).

    Article  CAS  Google Scholar 

  28. Moore, J. M. & McKinnon, W. B. Geologically diverse Pluto and Charon: implications for the dwarf planets of the Kuiper belt. Annu. Rev. Earth Planet. Sci. 49, 173–200 (2021).

    Article  CAS  Google Scholar 

  29. Robbins, S. J. et al. Geologic landforms and chronostratigraphic history of Charon as revealed by a hemispheric geologic map. J. Geophys. Res. Planets 124, 155–174 (2019).

    Article  Google Scholar 

  30. White, O. et al. in The Pluto System After New Horizons (eds Moore, J. M. et al.) 55 (Univ. Arizona Press, 2021).

  31. Porter, S. B. & Canup, R. M. Orbits and masses of the small satellites of Pluto. Planet. Sci. J. 4, 120 (2023).

    Article  Google Scholar 

  32. Brozović, M., Showalter, M. R., Jacobson, R. A. & Buie, M. W. The orbits and masses of satellites of Pluto. Icarus 246, 317–329 (2015).

    Article  Google Scholar 

  33. Nimmo, F. et al. Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287, 12–29 (2017).

    Article  Google Scholar 

  34. Nimmo, F. & Brown, M. E. The internal structure of Eris inferred from its spin and orbit evolution. Sci. Adv. 9, eadi9201 (2023).

    Article  Google Scholar 

  35. Sicardy, B. et al. A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature 478, 493–496 (2011).

    Article  CAS  Google Scholar 

  36. Brown, M. E. & Butler, B. J. Medium-sized satellites of large Kuiper belt objects. Astron. J. 156, 164 (2018).

    Article  Google Scholar 

  37. Ragozzine, D. & Brown, M. E. Orbits and masses of the satellites of the dwarf planet Haumea (2003 EL61). Astron. J. 137, 4766 (2009).

    Article  Google Scholar 

  38. Dunham, E., Desch, S. & Probst, L. Haumea’s shape, composition, and internal structure. Astrophys. J. 877, 41 (2019).

    Article  CAS  Google Scholar 

  39. Müller, T. et al. Haumea’s thermal emission revisited in the light of the occultation results. Icarus 334, 39–51 (2019).

    Article  Google Scholar 

  40. Parker, A. et al. The mass, density, and figure of the Kuiper belt dwarf planet Makemake. In AAS/Division for Planetary Sciences Meeting 50 abstr. 509-02 (2018).

  41. Brown, M. On the size, shape, and density of dwarf planet Makemake. Astrophys. J. Lett. 767, L7 (2013).

    Article  Google Scholar 

  42. Parker, A. H., Buie, M. W., Grundy, W. M. & Noll, K. S. Discovery of a Makemakean moon. Astrophys. J. Lett. 825, L9 (2016).

    Article  Google Scholar 

  43. Fraser, W. C., Batygin, K., Brown, M. E. & Bouchez, A. The mass, orbit, and tidal evolution of the Quaoar–Weywot system. Icarus 222, 357–363 (2013).

    Article  Google Scholar 

  44. Pereira, C. et al. The two rings of (50000) Quaoar. Astron. Astrophys. 673, L4 (2023).

    Article  Google Scholar 

  45. Kiss, C. et al. The mass and density of the dwarf planet (225088) 2007 OR10. Icarus 334, 3–10 (2019).

    Article  Google Scholar 

  46. Grundy, W. et al. The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmarë. Icarus 257, 130–138 (2015).

    Article  Google Scholar 

  47. Souami, D. et al. A multi-chord stellar occultation by the large trans-Neptunian object (174567) Varda. Astron. Astrophys. 643, A125 (2020).

    Article  CAS  Google Scholar 

  48. Reufer, A., Meier, M. M. M., Benz, W. & Wieler, R. A hit-and-run giant impact scenario. Icarus 221, 296–299 (2012).

    Article  Google Scholar 

  49. Asphaug, E. & Reufer, A. Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nat. Geosci. 7, 564–568 (2014).

    Article  CAS  Google Scholar 

  50. Emsenhuber, A. et al. Realistic on-the-fly outcomes of planetary collisions. II. Bringing machine learning to N-body simulations. Astrophys. J. 891, 6 (2020).

    Article  Google Scholar 

  51. Ballantyne, H. A. et al. Investigating the feasibility of an impact-induced Martian dichotomy. Icarus 392, 115395 (2023).

    Article  Google Scholar 

  52. Turtle, E. P. & Pierazzo, E. Thickness of a Europan ice shell from impact crater simulations. Science 294, 1326–1328 (2001).

    Article  CAS  Google Scholar 

  53. Benz, W., Cameron, A. G. W. & Melosh, H. J. The origin of the Moon and the single-impact hypothesis III. Icarus 81, 113–131 (1989).

    Article  CAS  Google Scholar 

  54. Asphaug, E., Emsenhuber, A., Cambioni, S., Gabriel, T. S. J. & Schwartz, S. R. Collision chains among the terrestrial planets. III. Formation of the Moon. Planet. Sci. J. 2, 200 (2021).

    Article  Google Scholar 

  55. Ballantyne, H. A., Asphaug, E., Denton, C. A., Emsenhuber, A. & Jutzi, M. Sputnik Planitia as an impactor remnant indicates an ancient rocky mascon in an oceanless Pluto. Nat. Astron. 8, 1–8 (2024).

    Article  Google Scholar 

  56. Bray, V. J., Collins, G. S., Morgan, J. V., Melosh, H. J. & Schenk, P. M. Hydrocode simulation of Ganymede and Europa cratering trends—how thick is Europa’s crust? Icarus 231, 394–406 (2014).

    Article  Google Scholar 

  57. Ohnaka, M. A shear failure strength law of rock in the brittle-plastic transition regime. Geophys. Res. Lett. 22, 25–28 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge S. Cambioni and N. Baijal for their helpful suggestions in an early version of the paper, and J. T. Keane for the original name ‘kiss-and-run’ for the hypothesis. We acknowledge the University of Arizona High Performance Computing (HPC) for a generous resource allocation where all simulations were performed.

Author information

Authors and Affiliations

Authors

Contributions

C.A.D. led the project, ran the impact simulations, performed initial analysis and wrote the draft paper. E.A. assisted in the conceptualization of the initial idea and contributed to the paper. R.M. performed the dynamical analysis. A.E. assisted in the conceptualization of the initial idea and provided the collisional modelling framework. All authors contributed to the improvement of the analysis and the paper.

Corresponding author

Correspondence to C. Adeene Denton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Philip Carter, Sébastien Charnoz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Geometry of the collision.

Colors as in Figs. 1, 2, and 4.

Extended Data Fig. 2 Comparison of pre-impact tidal deformation.

Comparison of the tidal deformation that occurs prior to impact for bodies without strength (top), and with strength (bottom), in which the deformation is greatly reduced. Time of impact is at 0 h.

Extended Data Fig. 3 Role of pre-impact rotation.

Final states of collisions with strength, with otherwise identical impact parameters (θcoll = 45, vcoll/vesc ~ 1.1), as a function of target rotation: no spin (left), 6 h prograde period (middle), and 3 h prograde period (right, the same simulation as Fig. 1a and 2).

Extended Data Fig. 4 Role of pre-impact thermal structure.

Contrast between the final states of collisions with identical impact parameters (θcoll = 45, vcoll/vesc ~ 1.1) with varying internal thermal structures. Right shows the nominal solid target of Figs. 1a and 2). Left shows result for a hot target (majority of interior > 300 K, mostly liquid, left). Center is for a warm target (majority of interior > 230 K, center, more readily deformable ice shell).

Extended Data Fig. 5 Contrast between the final states of the Pluto-Charon-like collision shown in Figs. 1 and 2 (θcoll = 45, vcoll/vesc ~ 1.1), left, and the same collision parameters for an Orcus-Vanth-like system, right.

For our Orcus and Vanth simulation, both bodies are scaled down to 40% diameters of the Pluto-Charon case, with the same rock/ice mass distribution.

Extended Data Table 1 Parameters used for material strength of ice and rock
Extended Data Table 2 Simulation parameters and outcomes for rocky interior structures
Extended Data Table 3 Simulation parameters and outcomes for initial exploration of Charon-mass impactors

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2 and Table 1.

Supplementary Video 1

Video of the potential Charon-capturing collision shown in Fig. 2 (θcoll = 45°, vcoll/vesc ≈ 1.1, 3 h prograde rotation). Colours as in Figs. 1 and 2.

Supplementary Video 2

Video of the potential Charon-capturing collision shown in Fig. 4, using an impactor that is 55% rock by mass (θcoll = 45°, vcoll/vesc ≈ 1.2, 3 h prograde rotation). Colours as in Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denton, C.A., Asphaug, E., Emsenhuber, A. et al. Capture of an ancient Charon around Pluto. Nat. Geosci. 18, 37–43 (2025). https://doi.org/10.1038/s41561-024-01612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01612-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing