Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tilted transverse isotropy in Earth’s inner core

Abstract

Seismic waves traversing the inner core in a direction parallel to Earth’s rotation axis arrive faster than waves travelling in the equatorial plane. These observations have been explained in terms of a transversely isotropic inner-core model with a fast symmetry axis parallel to the rotation axis. In recent years, more complex models of the inner core have been developed containing strong regional variations such as hemispheres, isotropic layers and an innermost inner core, most of which assume spatially variable transverse isotropy with a fixed symmetry axis. Here we instead explain the travel times of inner-core-sensitive seismic waves in terms of tilted transverse isotropy, in which the magnitude of transverse isotropy is fixed, but the orientation of the symmetry axis is allowed to vary spatially. This model, derived from seismic tomography, fits travel time data and spatially variable fixed-axis models, yet requires fewer parameters. It features a central inner core with a strong alignment of the fast symmetry axis in the direction of Earth’s spin axis and two shallow caps beneath the Mid-Atlantic and the Indian Ocean/Indonesia regions with symmetry axes tilted towards the equatorial plane. This model indicates the potential for varying crystal orientations within the inner core, which would constrain inner-core dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed and predicted travel time data.
Fig. 2: Posterior probability distributions of the three Love parameters.
Fig. 3: Symmetry axis orientations.
Fig. 4: The symmetry axis orientation plotted as 3D streamlines.

Similar content being viewed by others

Data availability

Travel time data are available via Figshare at https://doi.org/10.6084/m9.figshare.26535394.v1 (ref. 48). Model parameters and ParaView movies are available as an electronic supplement.

Code availability

The code used to generate TTI inner core models is available upon request from the corresponding author.

References

  1. Poupinet, G., Pillet, R. & Souriau, A. Possible heterogeneity of the Earth’s core deduced from PKIKP travel times. Nature 305, 204–206 (1983).

    Article  Google Scholar 

  2. Masters, G. & Gilbert, F. Structure of the inner core inferred from observations of its spheroidal shear modes. Geophys. Res. Lett. 8, 569–571 (1981).

    Article  Google Scholar 

  3. Morelli, A., Dziewoński, A. M. & Woodhouse, J. H. Anisotropy of the inner core inferred from PKIKP travel times. Geophys. Res. Lett. 13, 1545–1548 (1986).

    Article  Google Scholar 

  4. Woodhouse, J. H., Giardini, D. & Li, X.-D. Evidence for inner core anisotropy from free oscillations. Geophys. Res. Lett. 13, 1549–1552 (1986).

    Article  Google Scholar 

  5. Tanaka, S. & Hamaguchi, H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP (BC)-PKP (DF) times. J. Geophys. Res. Solid Earth 102, 2925–2938 (1997).

    Article  Google Scholar 

  6. Creager, K. C. Large-scale variations in inner core anisotropy. J. Geophys. Res. Solid Earth 104, 23127–23139 (1999).

    Article  Google Scholar 

  7. Garcia, R. & Souriau, A. Inner core anisotropy and heterogeneity level. Geophys. Res. Lett. 27, 3121–3124 (2000).

    Article  Google Scholar 

  8. Irving, J. C. E. & Deuss, A. Hemispherical structure in inner core velocity anisotropy. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2010JB007942 (2011).

    Article  Google Scholar 

  9. Deuss, A., Irving, J. C. & Woodhouse, J. H. Regional variation of inner core anisotropy from seismic normal mode observations. Science 328, 1018–1020 (2010).

    Article  CAS  Google Scholar 

  10. Niu, F. & Wen, L. Hemispherical variations in seismic velocity at the top of the Earth’s inner core. Nature 410, 1081–1084 (2001).

    Article  CAS  Google Scholar 

  11. Waszek, L. & Deuss, A. Distinct layering in the hemispherical seismic velocity structure of Earth’s upper inner core. J. Geophys. Res Solid Earth https://doi.org/10.1029/2011JB008650 (2011).

    Article  Google Scholar 

  12. Burdick, S., Waszek, L. & Lekić, V. Seismic tomography of the uppermost inner core. Earth Planet. Sci. Lett. 528, 115789 (2019).

    Article  CAS  Google Scholar 

  13. Ishii, M. & Dziewoński, A. M. The innermost inner core of the Earth: evidence for a change in anisotropic behavior at the radius of about 300 km. Proc. Natl Acad. Sci. 99, 14026–14030 (2002).

    Article  CAS  Google Scholar 

  14. Sun, X. & Song, X. The inner inner core of the Earth: texturing of iron crystals from three-dimensional seismic anisotropy. Earth Planet. Sci. Lett. 269, 56–65 (2008).

    Article  CAS  Google Scholar 

  15. Frost, D. A. & Romanowicz, B. On the orientation of the fast and slow directions of anisotropy in the deep inner core. Phys. Earth Planet. Inter. 286, 101–110 (2019).

    Article  Google Scholar 

  16. Pham, T. & Tkalcic, H. Up-to-fivefold reverberating waves through the earth’s center and distinctly anisotropic innermost inner core. Nat. Commun. 14, 754 (2023).

    Article  CAS  Google Scholar 

  17. Brett, H., Hawkins, R., Waszek, L., Lythgoe, K. & Deuss, A. 3D transdimensional seismic tomography of the inner core. Earth Planet. Sci. Lett. 593, 117688 (2022).

    Article  CAS  Google Scholar 

  18. Frost, D. A., Lasbleis, M., Chandler, B. & Romanowicz, B. Dynamic history of the inner core constrained by seismic anisotropy. Nat. Geosci. 14, 531–535 (2021).

    Article  CAS  Google Scholar 

  19. Lythgoe, K., Deuss, A., Rudge, J. & Neufeld, J. Earth’s inner core: innermost inner core or hemispherical variations? Earth Planet. Sci. Lett. 385, 181–189 (2014).

    Article  CAS  Google Scholar 

  20. Costa de Lima, T., Tkalčić, H. & Waszek, L. A new probe into the innermost inner core anisotropy via the global coda-correlation wavefield. J. Geophys. Res. Solid Earth 127, e2021JB023540 (2022).

    Article  Google Scholar 

  21. Deguen, R., Cardin, P., Merkel, S. & Lebensohn, R. A. Texturing in Earth’s inner core due to preferential growth in its equatorial belt. Phys. Earth Planet. Inter. 188, 173–184 (2011).

    Article  Google Scholar 

  22. Lincot, A., Deguen, R., Merkel, S. & Cardin, P. Seismic response and anisotropy of a model hcp iron inner core. C.R. Geosci. 346, 148–157 (2014).

    Article  Google Scholar 

  23. Bodin, T. & Sambridge, M. Seismic tomography with the reversible jump algorithm. Geophys. J. Int. 178, 1411–1436 (2009).

    Article  Google Scholar 

  24. Tian, D. & Wen, L. Seismological evidence for a localized mushy zone at the earth’s inner core boundary. Nat. Commun. 8, 165 (2017).

    Article  Google Scholar 

  25. Brett, H. & Deuss, A. Inner core anisotropy measured using new ultra-polar PKIKP paths. Geophys. J. Int. 223, 1230–1246 (2020).

    Article  Google Scholar 

  26. Dziewoński, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  27. Love, A. E. H.A Treatise on the Mathematical Theory of Elasticity (Cambridge Univ. Press, 1927).

  28. Stixrude, L. & Cohen, R. High-pressure elasticity of iron and anisotropy of Earth’s inner core. Science 267, 1972–1975 (1995).

    Article  CAS  Google Scholar 

  29. Pejić, T., Hawkins, R., Sambridge, M. & Tkalčić, H. Transdimensional Bayesian attenuation tomography of the upper inner core. J. Geophys. Res. Solid Earth 124, 1929–1943 (2019).

    Article  Google Scholar 

  30. Ishii, M. & Dziewoński, A. M. Distinct seismic anisotropy at the centre of the Earth. Phys. Earth Planet. Inter. 140, 203–217 (2003).

    Article  Google Scholar 

  31. Lythgoe, K. H. & Deuss, A. The existence of radial anisotropy in Earth’s upper inner core revealed from seismic normal mode observations. Geophys. Res. Lett. 42, 4841–4848 (2015).

    Article  Google Scholar 

  32. Helffrich, G. & Mainprice, D. Anisotropy at the inner core boundary. Geophys. Res. Lett. 46, 11,959–11,967 (2019).

    Article  Google Scholar 

  33. Frost, D. A. & Romanowicz, B. Constraints on inner core anisotropy using array observations of P’P’. Geophys. Res. Lett. 44, 10–878 (2017).

    Article  Google Scholar 

  34. Martorell, B., Brodholt, J., Wood, I. G. & Vočadlo, L. The elastic properties and stability of fcc-Fe and fcc-FeNi alloys at inner-core conditions. Geophys. J. Int. 202, 94–101 (2015).

    Article  CAS  Google Scholar 

  35. Bergman, M., Agrawal, S., Carter, M. & Macleod-Silberstein, M. Transverse solidification textures in hexagonal close-packed alloys. J. Cryst. Growth 255, 204–211 (2003).

    Article  CAS  Google Scholar 

  36. Aubert, J., Amit, H., Hulot, G. & Olson, P. Thermochemical flows couple the Earth’s inner core growth to mantle heterogeneity. Nature 454, 758–761 (2008).

    Article  CAS  Google Scholar 

  37. Karato, S.-i Inner core anisotropy due to the magnetic field-induced preferred orientation of iron. Science 262, 1708–1711 (1993).

    Article  CAS  Google Scholar 

  38. Karato, S.-i Seismic anisotropy of the Earth’s inner core resulting from flow induced by Maxwell stresses. Nature 402, 871–873 (1999).

    Article  CAS  Google Scholar 

  39. Bergman, M. I. Measurements of electric anisotropy due to solidification texturing and the implications for the Earth’s inner core. Nature 389, 60–63 (1997).

    Article  CAS  Google Scholar 

  40. Yoshida, S., Sumita, I. & Kumazawa, M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res. Solid Earth 101, 28085–28103 (1996).

    Article  CAS  Google Scholar 

  41. Alboussiere, T., Deguen, R. & Melzani, M. Melting-induced stratification above the Earth’s inner core due to convective translation. Nature 466, 744–747 (2010).

    Article  CAS  Google Scholar 

  42. Deguen, R., Alboussière, T. & Labrosse, S. Double-diffusive translation of Earth’s inner core. Geophys. J. Int. 214, 88–107 (2018).

    Google Scholar 

  43. Kostecki, A. Tilted transverse isotropy. Nafta-Gaz 67, 769–776 (2011).

    Google Scholar 

  44. Auld, B. Acoustic Fields and Waves in Solids (Wiley & Sons, 1990).

  45. Cowles, M. K. & Carlin, B. P. Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91, 883–904 (1996).

    Article  Google Scholar 

  46. Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

    Article  Google Scholar 

  47. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article  CAS  Google Scholar 

  48. Brett, H. Inner core travel time data reference model: PREM. Figshare https://doi.org/10.6084/m9.figshare.26535394.v1 (2024).

  49. Cartopy: A Cartographic Python Library with a Matplotlib Interface (Met Office, 2015); https://scitools.org.uk/cartopy

Download references

Acknowledgements

This research was accomplished with financial support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 681535–ATUNE) and a Vici award number 016.160.310/526 from the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

H.B. wrote the computer programmes and made the TTI model; J.T. proposed the project and helped with the theory; A.D. supervised the project and performed the interpretation. All three authors contributed equally to writing the paper.

Corresponding authors

Correspondence to Hen Brett or Arwen Deuss.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Daniel Frost, Satoru Tanaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Alireza Bahadori and Stefan Lachowycz, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 PKP raypaths and travel time curves.

(a) Raypaths for the compressional PKP waves used in this study to image inner-core anisotropy, showing PKIKP (also called PKPdf), PKPab, PKPbc, and PKiKP (also called PKPcd) and (b) traveltime curves for the same waves.

Extended Data Fig. 2 Schematic diagram showing the effect of rotations.

Schematic diagram showing the effect of rotations about the z-axis by an angle η1 and y-axis by an angle η2 and a combined rotation of the two.

Extended Data Fig. 3 Summary of the Transdimensional Markov Chain Monte Carlo ensemble.

Summary of the Transdimensional Markov Chain Monte Carlo ensemble chains; we ran 20 chains for 4,000,000 iterations with an acceptance rate (the percentage of accepted perturbations) of 30.5%. The misfit drops rapidly in the first 200,000 iterations before reaching a misfit minimum; the transdimensional algorithm then samples models around this minimum value. Misfit is calculated using an L2 norm and then shown relative to the misfit of PREM (where misfit = 1.0 means the misfit of a chain is the same as PREM, misfit > 1.0 means the misfit of a chain is greater than PREM and misfit < 1.0 means the misfit of a chain is the lower than the prediction of PREM) (a) Variation of misfit with iteration in all 20 chains for our transdimensional model. (b) Variation of the number of volumes with iteration in all 20 chains for our transdimensional model. (c) Distribution of models as a function of the number of volumes.

Extended Data Fig. 4 Colatitude Maps.

Similar to Fig. 3, but showing only the symmetry axis colatitude and its standard deviation. Maps created with Cartopy49 with continent outlines from Natural Earth (https://www.naturalearthdata.com). Maps showing the symmetry axis colatitude at a, the inner-core boundary (1221.5 km radius), b, 800 km, and c, 400 km radius. Corresponding standard deviations (SD) are shown in panels df.

Extended Data Fig. 5 Observed and predicted travel time data from a fixed axis model.

Similar to Fig. 1, but comparing our traveltime data set (blue dots) with traveltime predictions (orange dots) based on our previous model17 with a fixed symmetry axis. a, PKPcd–PKPdf travel times. b, PKPbc–PKPdf travel times. c, PKPab–PKPdf travel times. d, Absolute (Abs.) PKPdf travel times. Travel times are plotted as a function of the angle of the inner-core segment of the PKPdf ray relative to Earth’s spin axis, ζ. eh, Fractional travel times δt/t as a function of turning-point longitude in the inner core. Observed travel times (blue dots) are compared to predictions based on our TTI inner-core model (orange dots).

Extended Data Fig. 6 Symmetry axis orientation maps without SSI data.

Similar to Fig. 3, but for a Tilted Transverse Isotropy inner core model excluding the anomalous South Sandwhich Island events. Maps in ac created with Cartopy49 with continent outlines from Natural Earth (https://www.naturalearthdata.com). ac, Maps showing the orientation of the symmetry axis at the inner-core boundary (a), 800 km (b) and 400 km (c) radius. d, Cross-sections in the equatorial plane. e, Cross-sections in the meridional plane.

Extended Data Fig. 7 Mineral physics travel time predictions for three iron crystal types.

Mineral physics predictions for three different phases of iron using elastic parameters from ab initio calculations.

Supplementary information

Supplementary Data

This contains the values of the model, discretized in a fine grid in 3D, with a header describing each model parameter and tab separated values.

Supplementary Video 1

This is an animation spinning around our model, showing streamlines of the axis orientation, with the colour of the streamline segments indicating the axis colatitude, with blue segments being polar.

Supplementary Video 2

This is an animation spinning around our model, showing streamlines of the axis orientation, with the colour of the streamline segments indicating the axis colatitude, with blue segments closer to a colatitude of 0.0 and red segments being closer to a colatitude of 90. This animation has been restricted to only showing streamline segments with a colatitude of 35° or less.

Supplementary Video 3

This is an animation spinning around our model, showing streamlines of the axis orientation, with the colour of the streamline segments indicating the axis colatitude, with blue segments closer to a colatitude of 0.0 and red segments being closer to a colatitude of 90. This animation has been restricted to only showing streamline segments within 690 km of the centre of Earth, showing a potential innermost inner core.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brett, H., Tromp, J. & Deuss, A. Tilted transverse isotropy in Earth’s inner core. Nat. Geosci. (2024). https://doi.org/10.1038/s41561-024-01539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41561-024-01539-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing