Abstract
The Ishtar Terra highlands on Venus consist of Lakshmi Planum, an Australia-sized crustal plateau with an average elevation of ~4 km that is comparable to that of the Tibetan Plateau, surrounded by elongated mountain belts with elevations of around 10 km, taller than the Himalayas. The region is floored by thick crust that is comparable to that of cratons on Earth. On Earth, plateaus and mountain belts result from the collision of tectonic plates. However, the origin of Ishtar Terra remains enigmatic because Venus lacks Earth-like plate tectonics. Here we use three-dimensional thermo-chemo-mechanical computational simulations of Venus-like mantle convection to show how magmatism and tectonics emerge from mantle dynamics. The simulations show that a lithosphere weakened as a result of high initial hydration or high surface temperatures enhances convective thinning and decompression melting, favouring the emplacement of a thick magmatic crust on top of a deep residual depleted mantle. The stiffer residual root deflects mantle flow outwards, leading to the formation of fold belts around the buoyant lithosphere that are consequently uplifted into a plateau and preserved from further deformation. The modelled topography, crustal thicknesses and gravity is consistent with observational constraints of Ishtar Terra. Our findings suggest that plateau formation on Venus may operate similarly to craton formation on the hot early Earth, before the onset of plate tectonics.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Code availability
Underworld2 version 2.8.1b is available via Zenodo at https://doi.org/10.5281/zenodo.3384283 (ref. 65).
References
Hansen, V. L. Global tectonic evolution of Venus, from exogenic to endogenic over time, and implications for early Earth processes. Phil. Trans. R. Soc. A 376, 20170412 (2018).
Gilmore, M. S., Collins, G. C., Ivanov, M. A., Mariangeli, L. & Head, J. W. Style and sequence of extensional structures in tessera terrain, Venus. J. Geophys. Res. 103, 16813–16840 (1998).
Ivanov, M. A. & Head, J. W. Formation and evolution of Lakshmi Planum, Venus: assessment of models using observations from geological mapping. Planet. Space Sci. 56, 1949–1966 (2008).
Phillips, R. J. & Hansen, V. L. Geological evolution of Venus: rises, plains, plumes, and plateaus. Science 279, 1492–1497 (1998).
Airey, M. W., Mather, T. A., Pyle, D. M. & Ghail, R. C. The distribution of volcanism in the Beta-Atla-Themis region of Venus: its relationship to rifting and implications for global tectonic regimes. J. Geophys. Res. Planets 122, 1626–1649 (2017).
Smrekar, S., Ostberg, C. & O’Rourke, J. G. Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting. Nat. Geosci. 16, 13–18 (2023).
Harris, L. B. & Bédard, J. H. in Evolution of Archean Crust and Early Life (eds Dilek,Y. & Furnes, H.) 215–291 (Springer, 2014).
Solomon, S. C. et al. Venus tectonics: an overview of Magellan observations. J. Geophys. Res. Planets 97, 13199–13255 (1992).
Phillips, R. J. & Hansen, V. L. Tectonic and magmatic evolution of Venus. Annu. Rev. Earth Planet. Sci. 22, 597–654 (1994).
Solomatov, V. S. & Moresi, L.-N. Stagnant lid convection on Venus. J. Geophys. Res. 101, 4737–4753 (1996).
Ghent, R. & Hansen, V. Structural and kinematic analysis of eastern Ovda Regio, Venus: implications for crustal plateau formation. Icarus 139, 116–136 (1999).
Hansen, V. & Willis, J. J. Structural analysis of a sampling of tesserae: implications for Venus geodynamics. Icarus 123, 296–312 (1996).
Bindschadler, D. L., Schubert, G. & Kaula, W. M. Coldspots and hotspots: global tectonics and mantle dynamics of Venus. J. Geophys. Res. Planets 97, 13495–13532 (1992).
Konopliv, A. S., Banerdt, W. B. & Sjogren, W. L. Venus gravity: 180th degree and order model. Icarus 139, 3–18 (1999).
Arkani-Hamed, J. Analysis and interpretation of high-resolution topography and gravity of Ishtar Terra, Venus. J. Geophys. Res. 101, 4961–4710 (1996).
Hansen, V. L. & Phillips, R. J. Formation of Ishtar Terra, Venus: surface and gravity constraints. Geology 23, 292–296 (1995).
Parmentier, E. M. & Hess, P. C. Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992).
Hansen, V. L. Geologic constraints on crustal plateau surface histories, Venus: the lava pond and bolide impact hypotheses. J. Geophys. Res. https://doi.org/10.1029/2006JE002714 (2006).
Smrekar, S. E. & Parmentier, E. M. The interaction of mantle plumes with surface thermal and chemical boundary layers: applications to hotpspots on Venus. J. Geophys. Res. 101, 5397–5410 (1996).
Romeo, I. & Turcotte, D. L. Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Plan. Sci. Lett. 276, 85–97 (2008).
Mackwell, S. J., Zimmermann, M. E. & Kohlstedt, D. L. High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998).
Lenardic, A., Jellinek, A. M. & Moresi, L.-N. A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271, 34–42 (2008).
Armann, M. & Tackley, P. J. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. https://doi.org/10.1029/2012JE004231 (2012).
James, P. B., Zuber, M. T. & Phillips, R. J. Crustal thickness and support of topography on Venus. J. Geophys. Res. 118, 859–875 (2013).
Nimmo, F. & McKenzie, D. Volcanism and tectonics on Venus. Annu. Rev. Earth Planet. Sci. 26, 23–51 (1998).
Marchi, S., Rufu, R. & Korenaga, J. Long-lived volcanic resurfacing of Venus driven by early collisions. Nat. Astron. https://doi.org/10.1038/s41550-023-02037-2 (2023).
Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995).
Ivanov, M. A. & Head, J. W. Tessera terrain on Venus: a survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. J. Geophys. Res. 101, 14861–14908 (1996).
Basilevsky, A. T. & Head, J. W. III The geologic history of Venus: a stratigraphic view. J. Geophys. Res. 103, 8531–8544 (1998).
Gilmore, M., Treiman, A., Helbert, J. & Smrekar, S. Venus surface composition constrained by observation and experiment. Space Sci. Rev. 212, 1511–1540 (2017).
Gilmore, M. S. Tellus Regio, Venus: evidence of tectonic assembly of tessera terrain and implications for exploration. Lunar Planet. Sci. Conf. Abstr. 40, 40.2015G (2009).
Byrne, P. K. et al. Venus tesserae feature layered, folded, and eroded rocks. Geology 49, 81–85 (2021).
Resor, P. G., Gilmore, M. S., Straley, B., Senske, D. A. & Herrick, R. R. Felsic tesserae on Venus permitted by lithospheric deformation models. J. Geophys. Res. Planets 126, e2020JE006642 (2021).
Gilmore, M. S., Ivanov, M. A., Head, J. W. III & Basilevsky, A. T. Duration of tessera deformation on Venus. J. Geophys. Res. 102, 13357–13368 (1997).
Hamilton, V. & Stofan, E. R. The geomorphology and evolution of Hecate Chasma, Venus. Icarus 121, 171–194 (1996).
Martin, P., Stofan, E. R., Glaze, L. S. & Smrekar, S. E. Coronae of Parga Chasma, Venus. J. Geophys. Res. Planets https://doi.org/10.1029/2006JE002758 (2007).
Davaille, A., Smrekar, S. E. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).
Adams, A. C., Stegman, D. R., Smrekar, S. E. & Tackley, P. J. Regional‐scale lithospheric recycling on venus via peel‐back delamination. J. Geophys. Res. Planets 127, e2022JE007460 (2022).
Lourenço, D. L., Rozel, A. B., Gerya, T. V. & Tackley, P. J. Efficient cooling of rocky planets by intrusive magmatism. Nat. Geosci. 11, 322–327 (2018).
Capitanio, F. A., Nebel, O. & Cawood, P. Thermochemical lithosphere differentiation and the origin of cratonic mantle. Nature 588, 89–94 (2020).
Moresi, L. et al. Computational approaches to studying non-linear dynamics of the crust and mantle. Phys. Earth Plan. Int. 163, 69–82 (2007).
Jaupart, C., Labrosse, S., Lucazeau, F. & Mareschal, J. C. in Treatise on Geophysics (ed. Schubert, G.) 223–270 (Elsevier, 2015).
Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111, B05401 (2006).
McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).
Katz, R. F., Spiegelman, M. & Langmui, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosys. https://doi.org/10.1029/2002GC000433 (2003).
Gerya, T. V. Precambrian geodynamics: concepts and models. Gond. Res. 25, 442–463 (2014).
Phipps-Morgan, J. The generation of a compositional lithosphere by mid-ocean ridge melting and its effect on subsequent off-axis hotspot upwelling and melting. Earth Planet. Sci. Lett. 146, 213–232 (1997).
Karato, S.-I. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge Univ. Press, 2008).
Hirth, G. & Kohlstedt, D.L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).
Braun, M. G., Hirth, G. & Parmentier, E. M. The effects of deep damp melting on mantle flow and melt generation beneath mid-ocean ridges. Earth Planet. Sci. Lett. 176, 339–356 (2000).
Karato, S. Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309–310 (1986).
Rolf, T., Capitanio, F. A. & Tackley, P. J. Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models. Tectonophy 746, 339–351 (2018).
Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J. & Gerya, T. V. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).
O’Neill, C., Moresi, L., Müller, R. D., Albert, R. & Dufour, F. Ellipsis 3D: a particle-in-cell finite-element hybrid code for modelling mantle convection and lithospheric deformation. Comput. Geosci. 32, 1769–1779 (2006).
Hoogenboom, T. & Houseman, G. A. Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006).
Smrekar, S. E. & Stofan, E. R. Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277, 1289–1294 (1997).
Gerya, T. V. Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth Planet. Sci. Lett. 391, 183–192 (2014).
Gülcher, A. J. P., Gerya, T. V., Montési, L. G. J. & Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 12, 547–554 (2020).
Piskorz, D., Elkins-Tanton, L. T. & Smrekar, S. E. Coronae formation on Venus via extension and lithospheric instability. J. Geophys. Res. Planets 119, 2568–2582 (2014).
Crameri, F. & Tackley, P. J. Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface. J. Geophys. Res. 119, 5921–5942 (2014).
Weller, M. B. & Kiefer, W. S. The physics of changing tectonic regimes: implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys. Res. Planets 125, e2019JE005960 (2020).
Tackley, P. J. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. 1. Pseudoplastic yielding. Geochem. Geophys. Geosys. 1, 1021 (2000).
Turcotte, D. L. & Schubert, G. Geodynamics: Application of Continuum Mechanics to Geological Problems (John Wiley & Sons, 1982).
Feng, J., Meng, X., Chen, Z. & Zhang, S. Three-dimensional density interface inversion of gravity anomalies in the spectral domain. J. Geophys. Eng. 11, 035001 (2014).
Mansour, J. et al. underworldcode/underworld2: v2.8.1b. Zenodo https://doi.org/10.5281/zenodo.3384283 (2024).
Acknowledgements
We thank L. B. Harris, V. L. Hansen and P. A. Cawood for discussions. We acknowledge the provision of resources and services from the National Computational Infrastructure (NCI) and the support of AuScope and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, using funding from the National Aeronautics and Space Administration (80NM0018F0612) via the Solar Systems Workings programme. Support to M.K. from the DOE CSGF and to D.S. from NASA Award 80NSSC22K0100 are acknowledged. We acknowledge the Magellan Team at JPL and P. James for the Venus data.
Author information
Authors and Affiliations
Contributions
F.A.C. conceived the project and conducted the simulations and the post processing. M.K. processed the observables. All authors contributed to the data analysis and the writing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Charitra Jain, Masanori Kameyama and Patrick McGovern for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Initial temperature distribution.
Non-adiabatic mantle temperature contours at T = 1300 °C (left panel) and T = 1100 °C (right panel).
Extended Data Fig. 2 Potential temperature of TCM models.
Models’ potential temperatures are shown for different cohesion σ0 tested.
Extended Data Fig. 3 Model viscosity and square root of the second invariant of the strain rates.
Viscosity η of the model presented in figure 3 at (a) 135 Myr, (b) 156 Myr and (c) 194 Myr. Strain rates of the model at (d) 135 Myr, (e) 156 Myr and (f) 194 Myr.
Extended Data Fig. 4 Elevation of thermochemical TCM models.
The elevation of the models for varying cohesion σ0 tested.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Capitanio, F.A., Kerr, M., Stegman, D.R. et al. Ishtar Terra highlands on Venus raised by craton-like formation mechanisms. Nat. Geosci. 17, 740–746 (2024). https://doi.org/10.1038/s41561-024-01485-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-024-01485-3