Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ishtar Terra highlands on Venus raised by craton-like formation mechanisms

Abstract

The Ishtar Terra highlands on Venus consist of Lakshmi Planum, an Australia-sized crustal plateau with an average elevation of ~4 km that is comparable to that of the Tibetan Plateau, surrounded by elongated mountain belts with elevations of around 10 km, taller than the Himalayas. The region is floored by thick crust that is comparable to that of cratons on Earth. On Earth, plateaus and mountain belts result from the collision of tectonic plates. However, the origin of Ishtar Terra remains enigmatic because Venus lacks Earth-like plate tectonics. Here we use three-dimensional thermo-chemo-mechanical computational simulations of Venus-like mantle convection to show how magmatism and tectonics emerge from mantle dynamics. The simulations show that a lithosphere weakened as a result of high initial hydration or high surface temperatures enhances convective thinning and decompression melting, favouring the emplacement of a thick magmatic crust on top of a deep residual depleted mantle. The stiffer residual root deflects mantle flow outwards, leading to the formation of fold belts around the buoyant lithosphere that are consequently uplifted into a plateau and preserved from further deformation. The modelled topography, crustal thicknesses and gravity is consistent with observational constraints of Ishtar Terra. Our findings suggest that plateau formation on Venus may operate similarly to craton formation on the hot early Earth, before the onset of plate tectonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Computational simulation of Venus-like mantle convection.
Fig. 2: Comparisons between Ishtar Terra and the computational simulation.
Fig. 3: Mantle flow, temperatures and melting through the formation of the plateau.
Fig. 4: Surface strain rates and magmatism evolution.

Similar content being viewed by others

Data availability

All the Venus datasets used are published and available14,24.

Code availability

Underworld2 version 2.8.1b is available via Zenodo at https://doi.org/10.5281/zenodo.3384283 (ref. 65).

References

  1. Hansen, V. L. Global tectonic evolution of Venus, from exogenic to endogenic over time, and implications for early Earth processes. Phil. Trans. R. Soc. A 376, 20170412 (2018).

    Article  Google Scholar 

  2. Gilmore, M. S., Collins, G. C., Ivanov, M. A., Mariangeli, L. & Head, J. W. Style and sequence of extensional structures in tessera terrain, Venus. J. Geophys. Res. 103, 16813–16840 (1998).

    Article  Google Scholar 

  3. Ivanov, M. A. & Head, J. W. Formation and evolution of Lakshmi Planum, Venus: assessment of models using observations from geological mapping. Planet. Space Sci. 56, 1949–1966 (2008).

    Article  Google Scholar 

  4. Phillips, R. J. & Hansen, V. L. Geological evolution of Venus: rises, plains, plumes, and plateaus. Science 279, 1492–1497 (1998).

    Article  CAS  Google Scholar 

  5. Airey, M. W., Mather, T. A., Pyle, D. M. & Ghail, R. C. The distribution of volcanism in the Beta-Atla-Themis region of Venus: its relationship to rifting and implications for global tectonic regimes. J. Geophys. Res. Planets 122, 1626–1649 (2017).

    Article  Google Scholar 

  6. Smrekar, S., Ostberg, C. & O’Rourke, J. G. Earth-like lithospheric thickness and heat flow on Venus consistent with active rifting. Nat. Geosci. 16, 13–18 (2023).

    Article  CAS  Google Scholar 

  7. Harris, L. B. & Bédard, J. H. in Evolution of Archean Crust and Early Life (eds Dilek,Y. & Furnes, H.) 215–291 (Springer, 2014).

  8. Solomon, S. C. et al. Venus tectonics: an overview of Magellan observations. J. Geophys. Res. Planets 97, 13199–13255 (1992).

    Article  Google Scholar 

  9. Phillips, R. J. & Hansen, V. L. Tectonic and magmatic evolution of Venus. Annu. Rev. Earth Planet. Sci. 22, 597–654 (1994).

    Article  Google Scholar 

  10. Solomatov, V. S. & Moresi, L.-N. Stagnant lid convection on Venus. J. Geophys. Res. 101, 4737–4753 (1996).

    Article  Google Scholar 

  11. Ghent, R. & Hansen, V. Structural and kinematic analysis of eastern Ovda Regio, Venus: implications for crustal plateau formation. Icarus 139, 116–136 (1999).

    Article  Google Scholar 

  12. Hansen, V. & Willis, J. J. Structural analysis of a sampling of tesserae: implications for Venus geodynamics. Icarus 123, 296–312 (1996).

    Article  Google Scholar 

  13. Bindschadler, D. L., Schubert, G. & Kaula, W. M. Coldspots and hotspots: global tectonics and mantle dynamics of Venus. J. Geophys. Res. Planets 97, 13495–13532 (1992).

    Article  Google Scholar 

  14. Konopliv, A. S., Banerdt, W. B. & Sjogren, W. L. Venus gravity: 180th degree and order model. Icarus 139, 3–18 (1999).

    Article  Google Scholar 

  15. Arkani-Hamed, J. Analysis and interpretation of high-resolution topography and gravity of Ishtar Terra, Venus. J. Geophys. Res. 101, 4961–4710 (1996).

    Google Scholar 

  16. Hansen, V. L. & Phillips, R. J. Formation of Ishtar Terra, Venus: surface and gravity constraints. Geology 23, 292–296 (1995).

    Article  Google Scholar 

  17. Parmentier, E. M. & Hess, P. C. Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992).

    Article  Google Scholar 

  18. Hansen, V. L. Geologic constraints on crustal plateau surface histories, Venus: the lava pond and bolide impact hypotheses. J. Geophys. Res. https://doi.org/10.1029/2006JE002714 (2006).

  19. Smrekar, S. E. & Parmentier, E. M. The interaction of mantle plumes with surface thermal and chemical boundary layers: applications to hotpspots on Venus. J. Geophys. Res. 101, 5397–5410 (1996).

    Article  Google Scholar 

  20. Romeo, I. & Turcotte, D. L. Pulsating continents on Venus: an explanation for crustal plateaus and tessera terrains. Earth Plan. Sci. Lett. 276, 85–97 (2008).

    Article  CAS  Google Scholar 

  21. Mackwell, S. J., Zimmermann, M. E. & Kohlstedt, D. L. High-temperature deformation of dry diabase with application to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998).

    Article  Google Scholar 

  22. Lenardic, A., Jellinek, A. M. & Moresi, L.-N. A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271, 34–42 (2008).

    Article  CAS  Google Scholar 

  23. Armann, M. & Tackley, P. J. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. https://doi.org/10.1029/2012JE004231 (2012).

  24. James, P. B., Zuber, M. T. & Phillips, R. J. Crustal thickness and support of topography on Venus. J. Geophys. Res. 118, 859–875 (2013).

    Article  Google Scholar 

  25. Nimmo, F. & McKenzie, D. Volcanism and tectonics on Venus. Annu. Rev. Earth Planet. Sci. 26, 23–51 (1998).

    Article  CAS  Google Scholar 

  26. Marchi, S., Rufu, R. & Korenaga, J. Long-lived volcanic resurfacing of Venus driven by early collisions. Nat. Astron. https://doi.org/10.1038/s41550-023-02037-2 (2023).

    Article  Google Scholar 

  27. Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995).

    Article  CAS  Google Scholar 

  28. Ivanov, M. A. & Head, J. W. Tessera terrain on Venus: a survey of the global distribution, characteristics, and relation to surrounding units from Magellan data. J. Geophys. Res. 101, 14861–14908 (1996).

    Article  Google Scholar 

  29. Basilevsky, A. T. & Head, J. W. III The geologic history of Venus: a stratigraphic view. J. Geophys. Res. 103, 8531–8544 (1998).

    Article  Google Scholar 

  30. Gilmore, M., Treiman, A., Helbert, J. & Smrekar, S. Venus surface composition constrained by observation and experiment. Space Sci. Rev. 212, 1511–1540 (2017).

    Article  CAS  Google Scholar 

  31. Gilmore, M. S. Tellus Regio, Venus: evidence of tectonic assembly of tessera terrain and implications for exploration. Lunar Planet. Sci. Conf. Abstr. 40, 40.2015G (2009).

  32. Byrne, P. K. et al. Venus tesserae feature layered, folded, and eroded rocks. Geology 49, 81–85 (2021).

    Article  CAS  Google Scholar 

  33. Resor, P. G., Gilmore, M. S., Straley, B., Senske, D. A. & Herrick, R. R. Felsic tesserae on Venus permitted by lithospheric deformation models. J. Geophys. Res. Planets 126, e2020JE006642 (2021).

    Article  CAS  Google Scholar 

  34. Gilmore, M. S., Ivanov, M. A., Head, J. W. III & Basilevsky, A. T. Duration of tessera deformation on Venus. J. Geophys. Res. 102, 13357–13368 (1997).

    Article  Google Scholar 

  35. Hamilton, V. & Stofan, E. R. The geomorphology and evolution of Hecate Chasma, Venus. Icarus 121, 171–194 (1996).

    Article  Google Scholar 

  36. Martin, P., Stofan, E. R., Glaze, L. S. & Smrekar, S. E. Coronae of Parga Chasma, Venus. J. Geophys. Res. Planets https://doi.org/10.1029/2006JE002758 (2007).

  37. Davaille, A., Smrekar, S. E. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017).

    Article  CAS  Google Scholar 

  38. Adams, A. C., Stegman, D. R., Smrekar, S. E. & Tackley, P. J. Regional‐scale lithospheric recycling on venus via peel‐back delamination. J. Geophys. Res. Planets 127, e2022JE007460 (2022).

    Article  Google Scholar 

  39. Lourenço, D. L., Rozel, A. B., Gerya, T. V. & Tackley, P. J. Efficient cooling of rocky planets by intrusive magmatism. Nat. Geosci. 11, 322–327 (2018).

    Article  Google Scholar 

  40. Capitanio, F. A., Nebel, O. & Cawood, P. Thermochemical lithosphere differentiation and the origin of cratonic mantle. Nature 588, 89–94 (2020).

    Article  CAS  Google Scholar 

  41. Moresi, L. et al. Computational approaches to studying non-linear dynamics of the crust and mantle. Phys. Earth Plan. Int. 163, 69–82 (2007).

    Article  Google Scholar 

  42. Jaupart, C., Labrosse, S., Lucazeau, F. & Mareschal, J. C. in Treatise on Geophysics (ed. Schubert, G.) 223–270 (Elsevier, 2015).

  43. Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111, B05401 (2006).

    Google Scholar 

  44. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  CAS  Google Scholar 

  45. Katz, R. F., Spiegelman, M. & Langmui, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosys. https://doi.org/10.1029/2002GC000433 (2003).

  46. Gerya, T. V. Precambrian geodynamics: concepts and models. Gond. Res. 25, 442–463 (2014).

    Article  Google Scholar 

  47. Phipps-Morgan, J. The generation of a compositional lithosphere by mid-ocean ridge melting and its effect on subsequent off-axis hotspot upwelling and melting. Earth Planet. Sci. Lett. 146, 213–232 (1997).

    Article  CAS  Google Scholar 

  48. Karato, S.-I. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge Univ. Press, 2008).

  49. Hirth, G. & Kohlstedt, D.L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  CAS  Google Scholar 

  50. Braun, M. G., Hirth, G. & Parmentier, E. M. The effects of deep damp melting on mantle flow and melt generation beneath mid-ocean ridges. Earth Planet. Sci. Lett. 176, 339–356 (2000).

    Article  CAS  Google Scholar 

  51. Karato, S. Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309–310 (1986).

    Article  Google Scholar 

  52. Rolf, T., Capitanio, F. A. & Tackley, P. J. Constraints on mantle viscosity structure from continental drift histories in spherical mantle convection models. Tectonophy 746, 339–351 (2018).

    Article  Google Scholar 

  53. Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J. & Gerya, T. V. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

    Article  CAS  Google Scholar 

  54. O’Neill, C., Moresi, L., Müller, R. D., Albert, R. & Dufour, F. Ellipsis 3D: a particle-in-cell finite-element hybrid code for modelling mantle convection and lithospheric deformation. Comput. Geosci. 32, 1769–1779 (2006).

    Article  Google Scholar 

  55. Hoogenboom, T. & Houseman, G. A. Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006).

    Article  Google Scholar 

  56. Smrekar, S. E. & Stofan, E. R. Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277, 1289–1294 (1997).

    Article  CAS  Google Scholar 

  57. Gerya, T. V. Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth Planet. Sci. Lett. 391, 183–192 (2014).

    Article  CAS  Google Scholar 

  58. Gülcher, A. J. P., Gerya, T. V., Montési, L. G. J. & Munch, J. Corona structures driven by plume–lithosphere interactions and evidence for ongoing plume activity on Venus. Nat. Geosci. 12, 547–554 (2020).

    Article  Google Scholar 

  59. Piskorz, D., Elkins-Tanton, L. T. & Smrekar, S. E. Coronae formation on Venus via extension and lithospheric instability. J. Geophys. Res. Planets 119, 2568–2582 (2014).

    Article  CAS  Google Scholar 

  60. Crameri, F. & Tackley, P. J. Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface. J. Geophys. Res. 119, 5921–5942 (2014).

    Article  Google Scholar 

  61. Weller, M. B. & Kiefer, W. S. The physics of changing tectonic regimes: implications for the temporal evolution of mantle convection and the thermal history of Venus. J. Geophys. Res. Planets 125, e2019JE005960 (2020).

    Article  Google Scholar 

  62. Tackley, P. J. Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations. 1. Pseudoplastic yielding. Geochem. Geophys. Geosys. 1, 1021 (2000).

  63. Turcotte, D. L. & Schubert, G. Geodynamics: Application of Continuum Mechanics to Geological Problems (John Wiley & Sons, 1982).

  64. Feng, J., Meng, X., Chen, Z. & Zhang, S. Three-dimensional density interface inversion of gravity anomalies in the spectral domain. J. Geophys. Eng. 11, 035001 (2014).

    Article  Google Scholar 

  65. Mansour, J. et al. underworldcode/underworld2: v2.8.1b. Zenodo https://doi.org/10.5281/zenodo.3384283 (2024).

Download references

Acknowledgements

We thank L. B. Harris, V. L. Hansen and P. A. Cawood for discussions. We acknowledge the provision of resources and services from the National Computational Infrastructure (NCI) and the support of AuScope and the Australian Government via the National Collaborative Research Infrastructure Strategy (NCRIS). A portion of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, using funding from the National Aeronautics and Space Administration (80NM0018F0612) via the Solar Systems Workings programme. Support to M.K. from the DOE CSGF and to D.S. from NASA Award 80NSSC22K0100 are acknowledged. We acknowledge the Magellan Team at JPL and P. James for the Venus data.

Author information

Authors and Affiliations

Authors

Contributions

F.A.C. conceived the project and conducted the simulations and the post processing. M.K. processed the observables. All authors contributed to the data analysis and the writing.

Corresponding author

Correspondence to Fabio A. Capitanio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Charitra Jain, Masanori Kameyama and Patrick McGovern for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Initial temperature distribution.

Non-adiabatic mantle temperature contours at T = 1300 °C (left panel) and T = 1100 °C (right panel).

Extended Data Fig. 2 Potential temperature of TCM models.

Models’ potential temperatures are shown for different cohesion σ0 tested.

Extended Data Fig. 3 Model viscosity and square root of the second invariant of the strain rates.

Viscosity η of the model presented in figure 3 at (a) 135 Myr, (b) 156 Myr and (c) 194 Myr. Strain rates of the model at (d) 135 Myr, (e) 156 Myr and (f) 194 Myr.

Extended Data Fig. 4 Elevation of thermochemical TCM models.

The elevation of the models for varying cohesion σ0 tested.

Extended Data Table 1 Parameters used in the simulations
Extended Data Table 2 List of the models performed

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capitanio, F.A., Kerr, M., Stegman, D.R. et al. Ishtar Terra highlands on Venus raised by craton-like formation mechanisms. Nat. Geosci. 17, 740–746 (2024). https://doi.org/10.1038/s41561-024-01485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01485-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing