Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifaceted aerosol effects on precipitation

Abstract

Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence and scientific consensus behind these effects, categorized into radiative effects via modification of radiative fluxes and the energy balance, and microphysical effects via modification of cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol radiative effects (aerosol–radiation interactions and aerosol–cloud interactions) act as drivers of precipitation changes because global mean precipitation is constrained by energetics and surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale precipitation patterns, such as the intertropical convergence zone. The extent of aerosol effects on precipitation at smaller scales is less clear. Although there is broad consensus and strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on precipitation across scales remains highly uncertain. Global cloud-resolving models provide opportunities to investigate mechanisms that are currently not well represented in global climate models and to robustly connect local effects with larger scales. This will increase our confidence in predicted impacts of climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Precipitation change due to anthropogenic aerosol in current climate models.
Fig. 2: Physical mechanisms of aerosols effects on precipitation.
Fig. 3: Precipitation changes to idealized absorbing aerosol perturbations.
Fig. 4: Simulated aerosol effects on deep convection.

Similar content being viewed by others

References

  1. IPCC: Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  2. Douville, H. et al. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 8 (Cambridge Univ. Press, 2021).

  3. Hartmann, D. L. et al. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (Cambridge Univ. Press, 2013).

  4. Stier, P., van den Heever, S. C. & Dagan, G. The GEWEX Aerosol Precipitation Initiative (GEWEX, 2023); https://www.gewex.org/GAP/

  5. Mitchell, J. F. B., Wilson, C. A. & Cunnington, W. M. On CO2 climate sensitivity and model dependence of results. Q. J. R. Meteorol. Soc. 113, 293–322 (1987).

    Article  CAS  Google Scholar 

  6. Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article  CAS  Google Scholar 

  7. Stephens, G. L. & Hu, Y. X. Are climate-related changes to the character of global-mean precipitation predictable? Environ. Res. Lett. 5, 025209 (2010).

    Article  Google Scholar 

  8. Muller, C. J. & O’Gorman, P. A. An energetic perspective on the regional response of precipitation to climate change. Nat. Clim. Change 1, 266–271 (2011).

    Article  Google Scholar 

  9. Myhre, G. et al. PDRMIP A Precipitation Driver and Response Model Intercomparison Project—protocol and preliminary results. Bull. Am. Meteorol. Soc. 98, 1185–1198 (2017).

    Article  CAS  Google Scholar 

  10. Richardson, T. B. et al. Drivers of precipitation change: an energetic understanding. J. Clim. 31, 9641–9657 (2018).

    Article  Google Scholar 

  11. Dagan, G. & Stier, P. Constraint on precipitation response to climate change by combination of atmospheric energy and water budgets. NPJ Clim. Atmos. Sci. 3, 34 (2020).

    Article  CAS  Google Scholar 

  12. Roeckner, E. et al. Impact of carbonaceous aerosol forcing on regional climate change. Clim. Dyn. 27, 553–571 (2006).

    Article  Google Scholar 

  13. Dagan, G., Stier, P. & Watson‐Parris, D. Analysis of the atmospheric water budget for elucidating the spatial scale of precipitation changes under climate change. Geophys. Res. Lett. 46, 10504–10511 (2019).

    Article  Google Scholar 

  14. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1218 (2003).

    Article  Google Scholar 

  15. Hodnebrog, Ø. et al. Water vapour adjustments and responses differ between climate drivers. Atmos. Chem. Phys. 19, 12887–12899 (2019).

    Article  CAS  Google Scholar 

  16. Stevens, B. & Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613 (2009).

    Article  CAS  Google Scholar 

  17. Seifert, A., Heus, T., Pincus, R. & Stevens, B. Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. J. Adv. Model. Earth Syst. 7, 1918–1937 (2015).

    Article  Google Scholar 

  18. van den Heever, S. C., Stephens, G. L. & Wood, N. B. Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci. 68, 699–718 (2011).

    Article  Google Scholar 

  19. Yamaguchi, T., Feingold, G. & Kazil, J. Aerosol–cloud interactions in trade wind cumulus clouds and the role of vertical wind shear. J. Geophys. Res. Atmos. 124, 12244–12261 (2019).

    Article  Google Scholar 

  20. Richardson, T. B., Samset, B. H., Andrews, T., Myhre, G. & Forster, P. M. An assessment of precipitation adjustment and feedback computation methods. J. Geophys. Res. Atmos. 121, 11608–11619 (2016).

    Article  Google Scholar 

  21. Samset, B. H. et al. Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett. 43, 2782–2791 (2016).

    Article  Google Scholar 

  22. Flaschner, D., Mauritsen, T. & Stevens, B. Understanding the intermodel spread in global-mean hydrological sensitivity. J. Clim. 29, 801–817 (2016).

    Article  Google Scholar 

  23. Dagan, G., Yeheskel, N. & Williams, A. I. L. Radiative forcing from aerosol-cloud interactions enhanced by large-scale circulation adjustments. Nat. Geosci. 16, 1092–1098 (2023).

    Article  CAS  Google Scholar 

  24. Williams, A. I. L., Watson-Parris, D., Dagan, G. & Stier, P. Dependence of fast changes in global and local precipitation on the geographical location of absorbing aerosol. J. Clim. 36, 6163–6176 (2023).

    Article  Google Scholar 

  25. Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Atmosphere—aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).

    Article  CAS  Google Scholar 

  26. Trenberth, K. E. & Dai, A. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030524 (2007).

  27. Oman, L., Robock, A., Stenchikov, G. L. & Thordarson, T. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027665 (2006).

  28. Ming, Y., Ramaswamy, V. & Persad, G. Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett. https://doi.org/10.1029/2010gl042895 (2010).

  29. Boucher, O. et al. In Climate Change 2013: The Physical Science Basis (eds Fuzzi, S. et al.) Ch. 7 (Cambridge Univ. Press, 2013).

  30. Myhre, G. et al. Sensible heat has significantly affected the global hydrological cycle over the historical period. Nat. Commun. 9, 1922 (2018).

    Article  CAS  Google Scholar 

  31. Salzmann, M. Global warming without global mean precipitation increase? Sci. Adv. 2, e1501572 (2016).

    Article  Google Scholar 

  32. Wu, P., Christidis, N. & Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nat. Clim. Change 3, 807–810 (2013).

    Google Scholar 

  33. Dagan, G., Stier, P. & Watson-Parris, D. Contrasting response of precipitation to aerosol perturbation in the tropics and extratropics explained by energy budget considerations. Geophys. Res. Lett. 46, 7828–7837 (2019).

    Article  Google Scholar 

  34. Hodnebrog, O., Myhre, G., Forster, P. M., Sillmann, J. & Samset, B. H. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat. Commun. 7, 11236 (2016).

    Article  CAS  Google Scholar 

  35. O’Gorman, P. A., Allan, R. P., Byrne, M. P. & Previdi, M. Energetic constraints on precipitation under climate change. Surv. Geophys. 33, 585–608 (2012).

    Article  Google Scholar 

  36. Dagan, G., Stier, P. & Watson-Parris, D. An energetic view on the geographical dependence of the fast aerosol radiative effects on precipitation. J. Geophys. Res. Atmos. 126, e2020JD033045 (2021).

    Article  Google Scholar 

  37. Jiang, H. L. & Feingold, G. Effect of aerosol on warm convective clouds: aerosol–cloud–surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006138 (2006).

  38. Hansen, J., Sato, M. & Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. Atmos. 102, 6831–6864 (1997).

    Article  CAS  Google Scholar 

  39. Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000).

    Article  CAS  Google Scholar 

  40. Sand, M., Samset, B. H., Tsigaridis, K., Bauer, S. E. & Myhre, G. Black carbon and precipitation: an energetics perspective. J. Geophys. Res. Atmos. 125, e2019JD032239 (2020).

    Article  CAS  Google Scholar 

  41. Johnson, B. T., Shine, K. P. & Forster, P. M. The semi-direct aerosol effect: impact of absorbing aerosols on marine stratocumulus. Q. J. R. Meteorol. Soc. 130, 1407–1422 (2004).

    Article  Google Scholar 

  42. Yamaguchi, T., Feingold, G., Kazil, J. & McComiskey, A. Stratocumulus to cumulus transition in the presence of elevated smoke layers. Geophys. Res. Lett. 42, 10478–10485 (2015).

    Article  Google Scholar 

  43. Redemann, J. et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmos. Chem. Phys. 21, 1507–1563 (2021).

    Article  CAS  Google Scholar 

  44. Herbert, R., Stier, P. & Dagan, G. Isolating large-scale smoke impacts on cloud and precipitation processes over the Amazon with convection permitting resolution. J. Geophys. Res. Atmos. 126, e2021JD034615 (2021).

    Article  CAS  Google Scholar 

  45. Menon, S., Hansen, J., Nazarenko, L. & Luo, Y. F. Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002).

    Article  CAS  Google Scholar 

  46. Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011).

    Article  CAS  Google Scholar 

  47. Wang, C. A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003jd004084 (2004).

  48. Leung, G. R. & van den Heever, S. C. Aerosol breezes drive cloud and precipitation increases. Nat. Commun. 14, 2508 (2023).

    Article  CAS  Google Scholar 

  49. Fan, J. W. et al. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos. https://doi.org/10.1029/2009jd012352 (2009).

  50. Li, X. Q. et al. South Asian Summer Monsoon response to aerosol-forced sea surface temperatures. Geophys. Res. Lett. https://doi.org/10.1029/2019GL085329 (2020).

  51. Zanis, P. et al. Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study. Atmos. Chem. Phys. 20, 8381–8404 (2020).

    Article  CAS  Google Scholar 

  52. Wang, C., Kim, D., Ekman, A. M. L., Barth, M. C. & Rasch, P. J. Impact of anthropogenic aerosols on Indian summer monsoon. Geophys. Res. Lett. https://doi.org/10.1029/2009gl040114 (2009).

  53. O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  54. Singh, D., Bollasina, M., Ting, M. F. & Diffenbaugh, N. S. Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics. Clim. Dyn. 52, 6301–6320 (2019).

    Article  Google Scholar 

  55. Grant, L. D. & van den Heever, S. C. Aerosol–cloud–land surface interactions within tropical sea breeze convection. J. Geophys. Res. Atmos. 119, 8340–8361 (2014).

    Article  Google Scholar 

  56. Bollasina, M. A., Ming, Y., Ramaswamy, V., Schwarzkopf, M. D. & Naik, V. Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian monsoon. Geophys. Res. Lett. 41, 680–687 (2014).

    Article  CAS  Google Scholar 

  57. Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    Article  CAS  Google Scholar 

  58. Undorf, S., Bollasina, M. A., Booth, B. B. B. & Hegerl, G. C. Contrasting the effects of the 1850–1975 increase in sulphate aerosols from North America and Europe on the Atlantic in the CESM. Geophys. Res. Lett. 45, 11930–11940 (2018).

    Article  Google Scholar 

  59. Wilcox, L. J., Highwood, E. J. & Dunstone, N. J. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett. 8, 024033 (2013).

    Article  Google Scholar 

  60. Folland, C. K., Palmer, T. N. & Parker, D. E. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986).

    Article  Google Scholar 

  61. Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. https://doi.org/10.1029/2006gl026267 (2006).

  62. Rotstayn, L. D. & Lohmann, U. Tropical rainfall trends and the indirect aerosol effect. J. Clim. 15, 2103–2116 (2002).

    Article  Google Scholar 

  63. Zhang, S., Stier, P., Dagan, G. & Wang, M. Anthropogenic aerosols modulated twentieth-century Sahel rainfall variability. Geophys. Res. Lett. https://doi.org/10.1029/2021GL095629 (2021).

  64. Menary, M. B. et al. Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020).

    Article  Google Scholar 

  65. Cai, W. et al. Pan-oceanic response to increasing anthropogenic aerosols: impacts on the Southern Hemisphere oceanic circulation. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027513 (2006).

  66. Delworth, T. L. & Dixon, K. W. Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett. https://doi.org/10.1029/2005gl024980 (2006).

  67. Dagan, G., Stier, P. & Watson-Parris, D. Aerosol forcing masks and delays the formation of the North Atlantic warming hole by three decades. Geophys. Res. Lett. 47, e2020GL090778 (2020).

    Article  Google Scholar 

  68. Haarsma, R. J., Selten, F. M. & Drijfhout, S. S. Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett. 10, 094007 (2015).

    Article  Google Scholar 

  69. Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M. & Gray, W. M. The recent increase in Atlantic hurricane activity: causes and implications. Science 293, 474–479 (2001).

    Article  CAS  Google Scholar 

  70. Trenberth, K. Uncertainty in hurricanes and global warming. Science 308, 1753–1754 (2005).

    Article  CAS  Google Scholar 

  71. Emanuel, K. & Sobel, A. Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J. Adv. Model. Earth Syst. 5, 447–458 (2013).

    Article  Google Scholar 

  72. Chiacchio, M. et al. On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins. J. Geophys. Res. Atmos. 122, 802–822 (2017).

    Article  Google Scholar 

  73. Jones, A. C. et al. Impacts of hemispheric solar geoengineering on tropical cyclone frequency. Nat. Commun. 8, 1382 (2017).

    Article  Google Scholar 

  74. Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate change. Eos 87, 233–241 (2011).

    Article  Google Scholar 

  75. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    Article  CAS  Google Scholar 

  76. Rousseau-Rizzi, R. On the Climate Variability of Tropical Cyclone Potential Intensity and Atlantic Hurricane Activity (MIT, 2021).

  77. Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013).

    Article  CAS  Google Scholar 

  78. Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab–ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Article  Google Scholar 

  79. Adam, O., Bischoff, T. & Schneider, T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: zonally averaged ITCZ position. J. Clim. 29, 3219–3230 (2016).

    Article  Google Scholar 

  80. Kristjansson, J. E., Iversen, T., Kirkevag, A., Seland, O. & Debernard, J. Response of the climate system to aerosol direct and indirect forcing: role of cloud feedbacks. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005jd006299 (2005).

  81. Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. https://doi.org/10.1029/2005gl024546 (2006).

  82. Wang, C. The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions. Ann. Geophys. 27, 3705–3711 (2009).

    Article  Google Scholar 

  83. Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3, 660–665 (2013).

    Article  CAS  Google Scholar 

  84. Navarro, J. C. A. et al. Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations. J. Clim. 30, 939–954 (2017).

    Article  Google Scholar 

  85. Voigt, A. et al. Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol. J. Adv. Model. Earth Syst. 9, 870–892 (2017).

    Article  Google Scholar 

  86. Hawcroft, M., Haywood, J. M., Collins, M. & Jones, A. The contrasting climate response to tropical and extratropical energy perturbations. Clim. Dyn. 51, 3231–3249 (2018).

    Article  Google Scholar 

  87. Zhao, S. Y. & Suzuki, K. Differing impacts of black carbon and sulfate aerosols on global precipitation and the ITCZ location via atmosphere and ocean energy perturbations. J. Clim. 32, 5567–5582 (2019).

    Article  Google Scholar 

  88. Zhang, S. P., Stier, P. & Watson-Parris, D. On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations. Atmos. Chem. Phys. 21, 10179–10197 (2021).

    Article  CAS  Google Scholar 

  89. Soden, B. & Chung, E. S. The large-scale dynamical response of clouds to aerosol forcing. J. Clim. 30, 8783–8794 (2017).

    Article  Google Scholar 

  90. Hari, V., Villarini, G., Karmakar, S., Wilcox, L. J. & Collins, M. Northward propagation of the Intertropical Convergence Zone and strengthening of Indian summer monsoon rainfall. Geophys. Res. Lett. 47, e2020GL089823 (2020).

    Article  Google Scholar 

  91. Allen, R. J., Evan, A. T. & Booth, B. B. B. Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Clim. 28, 8219–8246 (2015).

    Article  Google Scholar 

  92. Reutter, P. et al. Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys. 9, 7067–7080 (2009).

    Article  CAS  Google Scholar 

  93. Williams, E. et al. Contrasting convective regimes over the Amazon: implications for cloud electrification. J. Geophys. Res. Atmos. https://doi.org/10.1029/2001jd000380 (2002).

  94. L’Ecuyer, T. S., Berg, W., Haynes, J., Lebsock, M. & Takemura, T. Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008jd011273 (2009).

  95. Albrecht, B. A. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230 (1989).

    Article  CAS  Google Scholar 

  96. Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 8, 1251–1256 (1974).

    Article  Google Scholar 

  97. Possner, A., Ekman, A. M. L. & Lohmann, U. Cloud response and feedback processes in stratiform mixed-phase clouds perturbed by ship exhaust. Geophys. Res. Lett. 44, 1964–1972 (2017).

    Article  CAS  Google Scholar 

  98. Andreae, M. O. et al. Smoking rain clouds over the Amazon. Science 303, 1337–1342 (2004).

    Article  CAS  Google Scholar 

  99. Durkee, P. A. et al. The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: a test of MAST hypotheses 1i and 1ii. J. Atmos. Sci. 57, 2554–2569 (2000).

    Article  Google Scholar 

  100. Christensen, M. W., Suzuki, K., Zambri, B. & Stephens, G. L. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett. 41, 6970–6977 (2014).

    Article  Google Scholar 

  101. Toll, V., Christensen, M., Gasso, S. & Bellouin, N. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model. Geophys. Res. Lett. 44, 12492–12500 (2017).

    Article  Google Scholar 

  102. Gryspeerdt, E., Smith, T. W. P., O’Keeffe, E., Christensen, M. W. & Goldsworth, F. W. The impact of ship emission controls recorded by cloud properties. Geophys. Res. Lett. 46, 12547–12555 (2019).

    Article  CAS  Google Scholar 

  103. Watson-Parris, D. et al. Shipping regulations lead to large reduction in cloud perturbations. Proc. Natl Acad. Sci. USA 119, e2206885119 (2022).

    Article  CAS  Google Scholar 

  104. Quaas, J., Boucher, O. & Lohmann, U. Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmos. Chem. Phys. 6, 947–955 (2006).

    Article  CAS  Google Scholar 

  105. Quaas, J. et al. Aerosol indirect effects—general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys. 9, 8697–8717 (2009).

    Article  CAS  Google Scholar 

  106. Rosenfeld, D. et al. Global observations of aerosol–cloud–precipitation–climate interactions. Rev. Geophys. 52, 750–808 (2014).

    Article  Google Scholar 

  107. Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 58, e2019RG000660 (2020).

    Article  CAS  Google Scholar 

  108. Stephens, G. et al. CloudSat and CALIPSO within the A-Train: ten years of actively observing the Earth system. Bull. Am. Meteorol. Soc. 99, 569–581 (2018).

    Article  Google Scholar 

  109. Platnick, S. et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 55, 502–525 (2017).

    Article  Google Scholar 

  110. Suzuki, K., Nakajima, T. Y. & Stephens, G. L. Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci. 67, 3019–3032 (2010).

    Article  Google Scholar 

  111. Mulmenstadt, J., Sourdeval, O., Delanoe, J. & Quaas, J. Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett. 42, 6502–6509 (2015).

    Article  Google Scholar 

  112. Malavelle, F. F. et al. Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature 546, 485–491 (2017).

    Article  CAS  Google Scholar 

  113. Christensen, M. W. & Stephens, G. L. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017125 (2012).

  114. McCoy, D. T. et al. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations. Atmos. Chem. Phys. 18, 5821–5846 (2018).

    Article  CAS  Google Scholar 

  115. Gryspeerdt, E. et al. Surprising similarities in model and observational aerosol radiative forcing estimates. Atmos. Chem. Phys. 20, 613–623 (2020).

    Article  CAS  Google Scholar 

  116. Jiang, H., Xue, H., Teller, A., Feingold, G. & Levin, Z. Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026024 (2006).

  117. Zhou, C. & Penner, J. E. Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM. Atmos. Chem. Phys. 17, 21–29 (2017).

    Article  CAS  Google Scholar 

  118. Koren, I., Dagan, G. & Altaratz, O. From aerosol-limited to invigoration of warm convective clouds. Science 344, 1143–1146 (2014).

    Article  CAS  Google Scholar 

  119. Seiki, T. & Nakajima, T. Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci. 71, 833–853 (2014).

    Article  Google Scholar 

  120. Sheffield, A. M., Saleeby, S. M. & van den Heever, S. C. Aerosol-induced mechanisms for cumulus congestus growth. J. Geophys. Res. Atmos. 120, 8941–8952 (2015).

    Article  Google Scholar 

  121. Xue, H. & Feingold, G. Large-eddy simulations of trade wind cumuli: investigation of aerosol indirect effects. J. Atmos. Sci. 63, 1605–1622 (2006).

    Article  Google Scholar 

  122. Stevens, B. & Seifert, A. Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteorol. Soc. Jpn. 2 86A, 143–162 (2008).

    Article  Google Scholar 

  123. Dagan, G., Koren, I. & Altaratz, O. Aerosol effects on the timing of warm rain processes. Geophys. Res. Lett. 42, 4590–4598 (2015).

    Article  Google Scholar 

  124. Dagan, G., Koren, I. & Altaratz, O. Competition between core and periphery-based processes in warm convective clouds—from invigoration to suppression. Atmos. Chem. Phys. 15, 2749–2760 (2015).

    Article  CAS  Google Scholar 

  125. Kogan, Y. L. & Martin, W. J. Parameterization of bulk condensation in numerical cloud models. J. Atmos. Sci. 51, 1728–1739 (1994).

    Article  Google Scholar 

  126. Seifert, A. & Heus, T. Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. 13, 5631–5645 (2013).

    Article  CAS  Google Scholar 

  127. Dagan, G., Koren, I., Altaratz, O. & Lehahn, Y. Shallow convective cloud field lifetime as a key factor for evaluating aerosol effects. iScience 10, 192–202 (2018).

    Article  Google Scholar 

  128. Spill, G., Stier, P., Field, P. R. & Dagan, G. Effects of aerosol in simulations of realistic shallow cumulus cloud fields in a large domain. Atmos. Chem. Phys. 19, 13507–13517 (2019).

    Article  CAS  Google Scholar 

  129. Chen, Y. C., Christensen, M. W., Stephens, G. L. & Seinfeld, J. H. Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci. 7, 643–646 (2014).

    Article  CAS  Google Scholar 

  130. Khain, A., Rosenfeld, D. & Pokrovsky, A. Aerosol impact on the dynamics and microphysics of deep convective clouds. Q. J. R. Meteorol. Soc. 131, 2639–2663 (2005).

    Article  Google Scholar 

  131. van den Heever, S. C., Carrio, G. G., Cotton, W. R., DeMott, P. J. & Prenni, A. J. Impacts of nucleating aerosol on Florida storms. Part I: mesoscale simulations. J. Atmos. Sci. 63, 1752–1775 (2006).

    Article  Google Scholar 

  132. Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).

    Article  CAS  Google Scholar 

  133. Tao, W. K., Chen, J. P., Li, Z. Q., Wang, C. & Zhang, C. D. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. https://doi.org/10.1029/2011rg000369 (2012).

  134. Koren, I. et al. Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci. 5, 118–122 (2012).

    Article  CAS  Google Scholar 

  135. Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A. & Rudich, Y. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett. https://doi.org/10.1029/2005GL023187 (2005).

  136. Clavner, M., Cotton, W. R., van den Heever, S. C., Saleeby, S. M. & Pierce, J. R. The response of a simulated mesoscale convective system to increased aerosol pollution: part I: precipitation intensity, distribution, and efficiency. Atmos. Res. 199, 193–208 (2018).

    Article  CAS  Google Scholar 

  137. Storer, R. L. & Van den Heever, S. C. Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci. 70, 430–446 (2013).

    Article  Google Scholar 

  138. Wang, C. A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004jd005720 (2005).

  139. Chua, X. R. & Ming, Y. Convective invigoration traced to warm-rain microphysics. Geophys. Res. Lett. https://doi.org/10.1029/2020GL089134 (2020).

  140. Lee, S. S., Donner, L. J., Phillips, V. T. J. & Ming, Y. Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Q. J. R. Meteorol. Soc. 134, 1201–1220 (2008).

    Article  Google Scholar 

  141. Grant, L. D. & van den Heever, S. C. Cold pool and precipitation responses to aerosol loading: modulation by dry layers. J. Atmos. Sci. 72, 1398–1408 (2015).

    Article  Google Scholar 

  142. Varble, A. C., Igel, A. L., Morrison, H., Grabowski, W. W. & Lebo, Z. J. Opinion: a critical evaluation of the evidence for aerosol invigoration of deep convection. Atmos. Chem. Phys. 23, 13791–13808 (2023).

    Article  CAS  Google Scholar 

  143. Fan, J. W. et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 359, 411–418 (2018).

    Article  CAS  Google Scholar 

  144. Romps, D. M. et al. Air pollution unable to intensify storms via warm-phase invigoration. Geophys. Res. Lett. https://doi.org/10.1029/2022gl100409 (2023).

  145. Abbott, T. H. & Cronin, T. W. Aerosol invigoration of atmospheric convection through increases in humidity. Science 371, 83–85 (2021).

    Article  CAS  Google Scholar 

  146. Dagan, G. et al. Boundary conditions representation can determine simulated aerosol effects on convective cloud fields. Commun. Earth Environ. 3, 71 (2022).

    Article  Google Scholar 

  147. White, B. et al. Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmos. Chem. Phys. 17, 12145–12175 (2017).

    Article  CAS  Google Scholar 

  148. Heikenfeld, M., White, B., Labbouz, L. & Stier, P. Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics. Atmos. Chem. Phys. 19, 2601–2627 (2019).

    Article  CAS  Google Scholar 

  149. Storer, R. L., van den Heever, S. C. & Stephens, G. L. Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci. 67, 3904–3915 (2010).

    Article  Google Scholar 

  150. Miltenberger, A. K. et al. Aerosol–cloud interactions in mixed-phase convective clouds—part 1: aerosol perturbations. Atmos. Chem. Phys. 18, 3119–3145 (2018).

    Article  CAS  Google Scholar 

  151. Lee, S. S., Donner, L. J. & Penner, J. E. Thunderstorm and stratocumulus: how does their contrasting morphology affect their interactions with aerosols? Atmos. Chem. Phys. 10, 6819–6837 (2010).

    Article  CAS  Google Scholar 

  152. Grabowski, W. W. Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci. 72, 2446–2464 (2015).

    Article  Google Scholar 

  153. Marinescu, P. J. et al. Impacts of varying concentrations of cloud condensation nuclei on deep convective cloud updrafts—a multimodel assessment. J. Atmos. Sci. 78, 1147–1172 (2021).

    Article  Google Scholar 

  154. Igel, A. L. & van den Heever, S. C. Invigoration or enervation of convective clouds by aerosols? Geophys. Res. Lett. 48, e2021GL093804 (2021).

    Article  Google Scholar 

  155. Connolly, P. J. et al. Cloud-resolving simulations of intense tropical Hector thunderstorms: implications for aerosol-cloud interactions. Q. J. R. Meteorol. Soc. 132, 3079–3106 (2006).

    Article  Google Scholar 

  156. Pan, Z. X. et al. Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. J. Geophys. Res. Atmos. https://doi.org/10.1029/2020JD034275 (2021).

  157. Kipling, Z., Labbouz, L. & Stier, P. Global response of parameterised convective cloud fields to anthropogenic aerosol forcing. Atmos. Chem. Phys. 20, 4445–4460 (2020).

    Article  CAS  Google Scholar 

  158. Lohmann, U. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys. 8, 2115–2131 (2008).

    Article  CAS  Google Scholar 

  159. Choi, Y. S., Lindzen, R. S., Ho, C. H. & Kim, J. Space observations of cold-cloud phase change. Proc. Natl Acad. Sci. USA 107, 11211–11216 (2010).

    Article  CAS  Google Scholar 

  160. Stevens, R. G. et al. A model intercomparison of CCN-limited tenuous clouds in the high Arctic. Atmos. Chem. Phys. 18, 11041–11071 (2018).

    Article  CAS  Google Scholar 

  161. Lohmann, U. A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett. https://doi.org/10.1029/2001GL014357 (2002).

  162. Vergara-Temprado, J. et al. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl Acad. Sci. USA 115, 2687–2692 (2018).

    Article  CAS  Google Scholar 

  163. Glassmeier, F. & Lohmann, U. Precipitation susceptibility and aerosol buffering of warm- and mixed-phase orographic clouds in idealized simulations. J. Atmos. Sci. 75, 1173–1194 (2018).

    Article  Google Scholar 

  164. French, J. R. et al. Precipitation formation from orographic cloud seeding. Proc. Natl Acad. Sci. USA 115, 1168–1173 (2018).

    Article  CAS  Google Scholar 

  165. National Research Council. Critical Issues In Weather Modification Research (National Academies Press, 2003).

  166. Benjamini, Y. et al. The Israel 4 cloud seeding experiment: primary results. J. Appl. Meteorol. Climatol. 62, 317–327 (2023).

    Article  Google Scholar 

  167. Korolev, A. & Leisner, T. Review of experimental studies of secondary ice production. Atmos. Chem. Phys. 20, 11767–11797 (2020).

    Article  CAS  Google Scholar 

  168. Khain, A. P. Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/4/1/015004 (2009).

  169. Miltenberger, A. K., Field, P. R., Hill, A. A., Shipway, B. J. & Wilkinson, J. M. Aerosol–cloud interactions in mixed-phase convective clouds—part 2: meteorological ensemble. Atmos. Chem. Phys. 18, 10593–10613 (2018).

    Article  Google Scholar 

  170. Schutgens, N. et al. On the spatio-temporal representativeness of observations. Atmos. Chem. Phys. 17, 9761–9780 (2017).

    Article  CAS  Google Scholar 

  171. Liu, H. et al. Non-monotonic aerosol effect on precipitation in convective clouds over tropical oceans. Sci. Rep. 9, 7809 (2019).

    Article  Google Scholar 

  172. Quaas, J., Stevens, B., Stier, P. & Lohmann, U. Interpreting the cloud cover–aerosol optical depth relationship found in satellite data using a general circulation model. Atmos. Chem. Phys. 10, 6129–6135 (2010).

    Article  CAS  Google Scholar 

  173. Textor, C. et al. The effect of harmonized emissions on aerosol properties in global models—an AeroCom experiment. Atmos. Chem. Phys. 7, 4489–4501 (2007).

    Article  CAS  Google Scholar 

  174. Stier, P. Limitations of passive satellite remote sensing to constrain global cloud condensation nuclei. Atmos. Chem. Phys. 15, 32607–32637 (2015).

    Google Scholar 

  175. Grandey, B. S., Gururaj, A., Stier, P. & Wagner, T. M. Rainfall–aerosol relationships explained by wet scavenging and humidity. Geophys. Res. Lett. 41, 5678–5684 (2014).

    Article  Google Scholar 

  176. Gryspeerdt, E., Stier, P., White, B. A. & Kipling, Z. Wet scavenging limits the detection of aerosol effects on precipitation. Atmos. Chem. Phys. 15, 7557–7570 (2015).

    Article  CAS  Google Scholar 

  177. Gryspeerdt, E. & Stier, P. Regime-based analysis of aerosol–cloud interactions. Geophys. Res. Lett. https://doi.org/10.1029/2012gl053221 (2012).

  178. Gryspeerdt, E., Stier, P. & Partridge, D. G. Links between satellite-retrieved aerosol and precipitation. Atmos. Chem. Phys. 14, 9677–9694 (2014).

    Article  CAS  Google Scholar 

  179. Storer, R. L., van den Heever, S. C. & L’Ecuyer, T. S. Observations of aerosol-induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos. 119, 3963–3975 (2014).

    Article  Google Scholar 

  180. Berg, W., L’Ecuyer, T. & van den Heever, S. Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD009649 (2008).

  181. Christensen, M. W. et al. Opportunistic experiments to constrain aerosol effective radiative forcing. Atmos. Chem. Phys. 22, 641–674 (2022).

    Article  CAS  Google Scholar 

  182. Coakley, J. A., Bernstein, R. L. & Durkee, P. A. Effect of ship-stack effluents on cloud reflectivity. Science 237, 1020–1022 (1987).

    Article  Google Scholar 

  183. Christensen, M. W., Coakley, J. A. & Tahnk, W. R. Morning-to-afternoon evolution of marine stratus polluted by underlying ships: implications for the relative lifetimes of polluted and unpolluted clouds. J. Atmos. Sci. 66, 2097–2106 (2009).

    Article  Google Scholar 

  184. Manshausen, P., Watson-Parris, D., Christensen, M. W., Jalkanen, J.-P. & Stier, P. Invisible ship tracks show large cloud sensitivity to aerosol. Nature 610, 101–106 (2022).

    Article  CAS  Google Scholar 

  185. Suzuki, K., Stephens, G. L., Heever, S. C. V. D. & Nakajima, T. Y. Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci. 68, 2655–2670 (2011).

    Article  Google Scholar 

  186. Thornton, J. A., Virts, K. S., Holzworth, R. H. & Mitchell, T. P. Lightning enhancement over major oceanic shipping lanes. Geophys. Res. Lett. 44, 9102–9111 (2017).

    Article  Google Scholar 

  187. Blossey, P. N., Bretherton, C. S., Thornton, J. A. & Virts, K. S. Locally enhanced aerosols over a shipping lane produce convective invigoration but weak overall indirect effects in cloud-resolving simulations. Geophys. Res. Lett. 45, 9305–9313 (2018).

    Article  Google Scholar 

  188. Berg, W., L’Ecuyer, T. & Kummerow, C. Rainfall climate regimes: the relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteorol. Climatol. 45, 434–454 (2006).

    Article  Google Scholar 

  189. Hegerl, G. C. et al. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc. 96, 1097–1115 (2015).

    Article  Google Scholar 

  190. Polson, D., Bollasina, M., Hegerl, G. C. & Wilcox, L. J. Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett. 41, 6023–6029 (2014).

    Article  Google Scholar 

  191. Sarojini, B. B., Stott, P. A. & Black, E. Detection and attribution of human influence on regional precipitation. Nat. Clim. Change 6, 669–675 (2016).

    Article  Google Scholar 

  192. Paik, S. et al. Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation. Geophys. Res. Lett. 47, e2019GL086875 (2020).

    Article  CAS  Google Scholar 

  193. Wilcox, L. J., Dong, B., Sutton, R. T. & Highwood, E. J. The 2014 hot, dry summer in Northeast Asia. Bull. Am. Meteorol. Soc. 96, S105–S110 (2015).

    Article  Google Scholar 

  194. Wilcox, L. J. et al. Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. Atmos. Chem. Phys. 20, 11955–11977 (2020).

    Article  CAS  Google Scholar 

  195. Deser, C. et al. Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: a new CESM1 large ensemble community resource. J. Clim. 33, 7835–7858 (2020).

    Article  Google Scholar 

  196. Reddington, C. et al. The Global Aerosol Synthesis and Science Project (GASSP): observations and modelling to reduce uncertainty. Bull. Am. Meteorol. Soc. 98, 1857–1877 (2017).

  197. Kahn, R. A. et al. SAM-CAAM: a concept for acquiring systematic aircraft measurements to characterize aerosol air masses. Bull. Am. Meteorol. Soc. 98, 2215–2228 (2017).

    Article  Google Scholar 

  198. Wehr, T. et al. The EarthCARE mission — science and system overview. Atmos. Meas. Tech. 16, 3581–3608 (2023).

    Article  CAS  Google Scholar 

  199. Medeiros, B. Aquaplanets as a framework for examination of aerosol effects. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2019MS001874 (2020).

  200. Dingley, B., Dagan, G. & Stier, P. Forcing convection to aggregate using diabatic heating perturbations. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2021MS002579 (2021).

  201. Stevens, B. et al. DYAMOND: the dynamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci. 6, 61 (2019).

  202. Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).

    Article  Google Scholar 

  203. Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).

    Article  Google Scholar 

  204. Giorgetta, M. A. et al. ICON-A, the atmosphere component of the ICON Earth system model: I. Model description. J. Adv. Model. Earth Syst. 10, 1613–1637 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This review builds on an expert workshop of the Global Energy and Water Cycle Exchanges (GEWEX) Aerosol Precipitation (GAP) initiative hosted by the University of Oxford with support of the European Research Council (ERC) project Constraining the Effects of Aerosols on Precipitation (RECAP) under the European Union’s Horizon 2020 research and innovation programme with grant agreement no. 724602. P.S. acknowledges support by the Alexander von Humboldt Foundation. S.C.v.d.H. acknowledges support from NASA grant 80NSSC18K0149. A.M.L.E., U.L., J.Q. and P.S. acknowledge funding by the FORCeS project under the European Union’s Horizon 2020 research programme with grant agreement 821205. J.Q. acknowledges funding by the BMBF project PATTERA (FKZ 01LP1902C). G.M. acknowledges support from the Research Council of Norway project SUPER (no. 250573). E.G. was supported by a Royal Society University Research Fellowship (URF/R1/191602). S.M.S. was supported by the US Department of Energy Atmospheric System Research grant no. DE-SC0021160. K.E. was supported by the National Science Foundation under grant AGS-1906768. M.W.C. acknowledges support from the Pacific Northwest National Laboratory operated for the US Department of Energy by Battelle Memorial Institute under contract no. DE-AC05-76RL01830. We thank D. Watson-Parris for providing CMIP6 precipitation data and helpful feedback. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6 and thank the modelling groups for making available their model output, the Earth System Grid Federation (ESGF) for archiving and providing access, and multiple funding agencies supporting CMIP6 and ESGF.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and S.C.v.d.H. developed the structure of the GEWEX Aerosol Preciptiation Initiative workshop programme providing the basis for this review paper. M.W.C. and E.G. served as raporteurs providing detailed meeting notes. P.S. and S.C.v.d.H. drafted the first version of the manuscript that was extended with contributions from M.W.C., E.G., G.D., M.B., L.D., K.E., A.M.L.E., G.F., P. Field, P. Forster, J.H., R.K., I.K., C.K., T.L., U.L., Y.M., G.M., J.Q., D.R., B.S., A.S., G.S. and W.-K.T. to the literature review, the synthesis of the results and the revised manuscript. G.D. created Figs. 1 and 3. P.S. created Fig. 2. S.M.S created Fig. 4.

Corresponding authors

Correspondence to Philip Stier or Susan C. van den Heever.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Pier Luigi Vidale and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stier, P., van den Heever, S.C., Christensen, M.W. et al. Multifaceted aerosol effects on precipitation. Nat. Geosci. 17, 719–732 (2024). https://doi.org/10.1038/s41561-024-01482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01482-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing