Abstract
Aerosols have been proposed to influence precipitation rates and spatial patterns from scales of individual clouds to the globe. However, large uncertainty remains regarding the underlying mechanisms and importance of multiple effects across spatial and temporal scales. Here we review the evidence and scientific consensus behind these effects, categorized into radiative effects via modification of radiative fluxes and the energy balance, and microphysical effects via modification of cloud droplets and ice crystals. Broad consensus and strong theoretical evidence exist that aerosol radiative effects (aerosol–radiation interactions and aerosol–cloud interactions) act as drivers of precipitation changes because global mean precipitation is constrained by energetics and surface evaporation. Likewise, aerosol radiative effects cause well-documented shifts of large-scale precipitation patterns, such as the intertropical convergence zone. The extent of aerosol effects on precipitation at smaller scales is less clear. Although there is broad consensus and strong evidence that aerosol perturbations microphysically increase cloud droplet numbers and decrease droplet sizes, thereby slowing precipitation droplet formation, the overall aerosol effect on precipitation across scales remains highly uncertain. Global cloud-resolving models provide opportunities to investigate mechanisms that are currently not well represented in global climate models and to robustly connect local effects with larger scales. This will increase our confidence in predicted impacts of climate change.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
IPCC: Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).
Douville, H. et al. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 8 (Cambridge Univ. Press, 2021).
Hartmann, D. L. et al. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (Cambridge Univ. Press, 2013).
Stier, P., van den Heever, S. C. & Dagan, G. The GEWEX Aerosol Precipitation Initiative (GEWEX, 2023); https://www.gewex.org/GAP/
Mitchell, J. F. B., Wilson, C. A. & Cunnington, W. M. On CO2 climate sensitivity and model dependence of results. Q. J. R. Meteorol. Soc. 113, 293–322 (1987).
Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).
Stephens, G. L. & Hu, Y. X. Are climate-related changes to the character of global-mean precipitation predictable? Environ. Res. Lett. 5, 025209 (2010).
Muller, C. J. & O’Gorman, P. A. An energetic perspective on the regional response of precipitation to climate change. Nat. Clim. Change 1, 266–271 (2011).
Myhre, G. et al. PDRMIP A Precipitation Driver and Response Model Intercomparison Project—protocol and preliminary results. Bull. Am. Meteorol. Soc. 98, 1185–1198 (2017).
Richardson, T. B. et al. Drivers of precipitation change: an energetic understanding. J. Clim. 31, 9641–9657 (2018).
Dagan, G. & Stier, P. Constraint on precipitation response to climate change by combination of atmospheric energy and water budgets. NPJ Clim. Atmos. Sci. 3, 34 (2020).
Roeckner, E. et al. Impact of carbonaceous aerosol forcing on regional climate change. Clim. Dyn. 27, 553–571 (2006).
Dagan, G., Stier, P. & Watson‐Parris, D. Analysis of the atmospheric water budget for elucidating the spatial scale of precipitation changes under climate change. Geophys. Res. Lett. 46, 10504–10511 (2019).
Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1218 (2003).
Hodnebrog, Ø. et al. Water vapour adjustments and responses differ between climate drivers. Atmos. Chem. Phys. 19, 12887–12899 (2019).
Stevens, B. & Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613 (2009).
Seifert, A., Heus, T., Pincus, R. & Stevens, B. Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. J. Adv. Model. Earth Syst. 7, 1918–1937 (2015).
van den Heever, S. C., Stephens, G. L. & Wood, N. B. Aerosol indirect effects on tropical convection characteristics under conditions of radiative–convective equilibrium. J. Atmos. Sci. 68, 699–718 (2011).
Yamaguchi, T., Feingold, G. & Kazil, J. Aerosol–cloud interactions in trade wind cumulus clouds and the role of vertical wind shear. J. Geophys. Res. Atmos. 124, 12244–12261 (2019).
Richardson, T. B., Samset, B. H., Andrews, T., Myhre, G. & Forster, P. M. An assessment of precipitation adjustment and feedback computation methods. J. Geophys. Res. Atmos. 121, 11608–11619 (2016).
Samset, B. H. et al. Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophys. Res. Lett. 43, 2782–2791 (2016).
Flaschner, D., Mauritsen, T. & Stevens, B. Understanding the intermodel spread in global-mean hydrological sensitivity. J. Clim. 29, 801–817 (2016).
Dagan, G., Yeheskel, N. & Williams, A. I. L. Radiative forcing from aerosol-cloud interactions enhanced by large-scale circulation adjustments. Nat. Geosci. 16, 1092–1098 (2023).
Williams, A. I. L., Watson-Parris, D., Dagan, G. & Stier, P. Dependence of fast changes in global and local precipitation on the geographical location of absorbing aerosol. J. Clim. 36, 6163–6176 (2023).
Ramanathan, V., Crutzen, P. J., Kiehl, J. T. & Rosenfeld, D. Atmosphere—aerosols, climate, and the hydrological cycle. Science 294, 2119–2124 (2001).
Trenberth, K. E. & Dai, A. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030524 (2007).
Oman, L., Robock, A., Stenchikov, G. L. & Thordarson, T. High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027665 (2006).
Ming, Y., Ramaswamy, V. & Persad, G. Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys. Res. Lett. https://doi.org/10.1029/2010gl042895 (2010).
Boucher, O. et al. In Climate Change 2013: The Physical Science Basis (eds Fuzzi, S. et al.) Ch. 7 (Cambridge Univ. Press, 2013).
Myhre, G. et al. Sensible heat has significantly affected the global hydrological cycle over the historical period. Nat. Commun. 9, 1922 (2018).
Salzmann, M. Global warming without global mean precipitation increase? Sci. Adv. 2, e1501572 (2016).
Wu, P., Christidis, N. & Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nat. Clim. Change 3, 807–810 (2013).
Dagan, G., Stier, P. & Watson-Parris, D. Contrasting response of precipitation to aerosol perturbation in the tropics and extratropics explained by energy budget considerations. Geophys. Res. Lett. 46, 7828–7837 (2019).
Hodnebrog, O., Myhre, G., Forster, P. M., Sillmann, J. & Samset, B. H. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nat. Commun. 7, 11236 (2016).
O’Gorman, P. A., Allan, R. P., Byrne, M. P. & Previdi, M. Energetic constraints on precipitation under climate change. Surv. Geophys. 33, 585–608 (2012).
Dagan, G., Stier, P. & Watson-Parris, D. An energetic view on the geographical dependence of the fast aerosol radiative effects on precipitation. J. Geophys. Res. Atmos. 126, e2020JD033045 (2021).
Jiang, H. L. & Feingold, G. Effect of aerosol on warm convective clouds: aerosol–cloud–surface flux feedbacks in a new coupled large eddy model. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006138 (2006).
Hansen, J., Sato, M. & Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. Atmos. 102, 6831–6864 (1997).
Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000).
Sand, M., Samset, B. H., Tsigaridis, K., Bauer, S. E. & Myhre, G. Black carbon and precipitation: an energetics perspective. J. Geophys. Res. Atmos. 125, e2019JD032239 (2020).
Johnson, B. T., Shine, K. P. & Forster, P. M. The semi-direct aerosol effect: impact of absorbing aerosols on marine stratocumulus. Q. J. R. Meteorol. Soc. 130, 1407–1422 (2004).
Yamaguchi, T., Feingold, G., Kazil, J. & McComiskey, A. Stratocumulus to cumulus transition in the presence of elevated smoke layers. Geophys. Res. Lett. 42, 10478–10485 (2015).
Redemann, J. et al. An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmos. Chem. Phys. 21, 1507–1563 (2021).
Herbert, R., Stier, P. & Dagan, G. Isolating large-scale smoke impacts on cloud and precipitation processes over the Amazon with convection permitting resolution. J. Geophys. Res. Atmos. 126, e2021JD034615 (2021).
Menon, S., Hansen, J., Nazarenko, L. & Luo, Y. F. Climate effects of black carbon aerosols in China and India. Science 297, 2250–2253 (2002).
Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011).
Wang, C. A modeling study on the climate impacts of black carbon aerosols. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003jd004084 (2004).
Leung, G. R. & van den Heever, S. C. Aerosol breezes drive cloud and precipitation increases. Nat. Commun. 14, 2508 (2023).
Fan, J. W. et al. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos. https://doi.org/10.1029/2009jd012352 (2009).
Li, X. Q. et al. South Asian Summer Monsoon response to aerosol-forced sea surface temperatures. Geophys. Res. Lett. https://doi.org/10.1029/2019GL085329 (2020).
Zanis, P. et al. Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study. Atmos. Chem. Phys. 20, 8381–8404 (2020).
Wang, C., Kim, D., Ekman, A. M. L., Barth, M. C. & Rasch, P. J. Impact of anthropogenic aerosols on Indian summer monsoon. Geophys. Res. Lett. https://doi.org/10.1029/2009gl040114 (2009).
O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).
Singh, D., Bollasina, M., Ting, M. F. & Diffenbaugh, N. S. Disentangling the influence of local and remote anthropogenic aerosols on South Asian monsoon daily rainfall characteristics. Clim. Dyn. 52, 6301–6320 (2019).
Grant, L. D. & van den Heever, S. C. Aerosol–cloud–land surface interactions within tropical sea breeze convection. J. Geophys. Res. Atmos. 119, 8340–8361 (2014).
Bollasina, M. A., Ming, Y., Ramaswamy, V., Schwarzkopf, M. D. & Naik, V. Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian monsoon. Geophys. Res. Lett. 41, 680–687 (2014).
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).
Undorf, S., Bollasina, M. A., Booth, B. B. B. & Hegerl, G. C. Contrasting the effects of the 1850–1975 increase in sulphate aerosols from North America and Europe on the Atlantic in the CESM. Geophys. Res. Lett. 45, 11930–11940 (2018).
Wilcox, L. J., Highwood, E. J. & Dunstone, N. J. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett. 8, 024033 (2013).
Folland, C. K., Palmer, T. N. & Parker, D. E. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986).
Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. https://doi.org/10.1029/2006gl026267 (2006).
Rotstayn, L. D. & Lohmann, U. Tropical rainfall trends and the indirect aerosol effect. J. Clim. 15, 2103–2116 (2002).
Zhang, S., Stier, P., Dagan, G. & Wang, M. Anthropogenic aerosols modulated twentieth-century Sahel rainfall variability. Geophys. Res. Lett. https://doi.org/10.1029/2021GL095629 (2021).
Menary, M. B. et al. Aerosol-forced AMOC changes in CMIP6 historical simulations. Geophys. Res. Lett. 47, e2020GL088166 (2020).
Cai, W. et al. Pan-oceanic response to increasing anthropogenic aerosols: impacts on the Southern Hemisphere oceanic circulation. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027513 (2006).
Delworth, T. L. & Dixon, K. W. Have anthropogenic aerosols delayed a greenhouse gas-induced weakening of the North Atlantic thermohaline circulation? Geophys. Res. Lett. https://doi.org/10.1029/2005gl024980 (2006).
Dagan, G., Stier, P. & Watson-Parris, D. Aerosol forcing masks and delays the formation of the North Atlantic warming hole by three decades. Geophys. Res. Lett. 47, e2020GL090778 (2020).
Haarsma, R. J., Selten, F. M. & Drijfhout, S. S. Decelerating Atlantic meridional overturning circulation main cause of future west European summer atmospheric circulation changes. Environ. Res. Lett. 10, 094007 (2015).
Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M. & Gray, W. M. The recent increase in Atlantic hurricane activity: causes and implications. Science 293, 474–479 (2001).
Trenberth, K. Uncertainty in hurricanes and global warming. Science 308, 1753–1754 (2005).
Emanuel, K. & Sobel, A. Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing. J. Adv. Model. Earth Syst. 5, 447–458 (2013).
Chiacchio, M. et al. On the links between meteorological variables, aerosols, and tropical cyclone frequency in individual ocean basins. J. Geophys. Res. Atmos. 122, 802–822 (2017).
Jones, A. C. et al. Impacts of hemispheric solar geoengineering on tropical cyclone frequency. Nat. Commun. 8, 1382 (2017).
Mann, M. E. & Emanuel, K. A. Atlantic hurricane trends linked to climate change. Eos 87, 233–241 (2011).
Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).
Rousseau-Rizzi, R. On the Climate Variability of Tropical Cyclone Potential Intensity and Atlantic Hurricane Activity (MIT, 2021).
Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 13, 1853–1877 (2013).
Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: idealized slab–ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).
Adam, O., Bischoff, T. & Schneider, T. Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: zonally averaged ITCZ position. J. Clim. 29, 3219–3230 (2016).
Kristjansson, J. E., Iversen, T., Kirkevag, A., Seland, O. & Debernard, J. Response of the climate system to aerosol direct and indirect forcing: role of cloud feedbacks. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005jd006299 (2005).
Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to Northern Hemisphere cooling. Geophys. Res. Lett. https://doi.org/10.1029/2005gl024546 (2006).
Wang, C. The sensitivity of tropical convective precipitation to the direct radiative forcings of black carbon aerosols emitted from major regions. Ann. Geophys. 27, 3705–3711 (2009).
Haywood, J. M., Jones, A., Bellouin, N. & Stephenson, D. Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat. Clim. Change 3, 660–665 (2013).
Navarro, J. C. A. et al. Future response of temperature and precipitation to reduced aerosol emissions as compared with increased greenhouse gas concentrations. J. Clim. 30, 939–954 (2017).
Voigt, A. et al. Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol. J. Adv. Model. Earth Syst. 9, 870–892 (2017).
Hawcroft, M., Haywood, J. M., Collins, M. & Jones, A. The contrasting climate response to tropical and extratropical energy perturbations. Clim. Dyn. 51, 3231–3249 (2018).
Zhao, S. Y. & Suzuki, K. Differing impacts of black carbon and sulfate aerosols on global precipitation and the ITCZ location via atmosphere and ocean energy perturbations. J. Clim. 32, 5567–5582 (2019).
Zhang, S. P., Stier, P. & Watson-Parris, D. On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations. Atmos. Chem. Phys. 21, 10179–10197 (2021).
Soden, B. & Chung, E. S. The large-scale dynamical response of clouds to aerosol forcing. J. Clim. 30, 8783–8794 (2017).
Hari, V., Villarini, G., Karmakar, S., Wilcox, L. J. & Collins, M. Northward propagation of the Intertropical Convergence Zone and strengthening of Indian summer monsoon rainfall. Geophys. Res. Lett. 47, e2020GL089823 (2020).
Allen, R. J., Evan, A. T. & Booth, B. B. B. Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Clim. 28, 8219–8246 (2015).
Reutter, P. et al. Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys. 9, 7067–7080 (2009).
Williams, E. et al. Contrasting convective regimes over the Amazon: implications for cloud electrification. J. Geophys. Res. Atmos. https://doi.org/10.1029/2001jd000380 (2002).
L’Ecuyer, T. S., Berg, W., Haynes, J., Lebsock, M. & Takemura, T. Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008jd011273 (2009).
Albrecht, B. A. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230 (1989).
Twomey, S. Pollution and the planetary albedo. Atmos. Environ. 8, 1251–1256 (1974).
Possner, A., Ekman, A. M. L. & Lohmann, U. Cloud response and feedback processes in stratiform mixed-phase clouds perturbed by ship exhaust. Geophys. Res. Lett. 44, 1964–1972 (2017).
Andreae, M. O. et al. Smoking rain clouds over the Amazon. Science 303, 1337–1342 (2004).
Durkee, P. A. et al. The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: a test of MAST hypotheses 1i and 1ii. J. Atmos. Sci. 57, 2554–2569 (2000).
Christensen, M. W., Suzuki, K., Zambri, B. & Stephens, G. L. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds. Geophys. Res. Lett. 41, 6970–6977 (2014).
Toll, V., Christensen, M., Gasso, S. & Bellouin, N. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model. Geophys. Res. Lett. 44, 12492–12500 (2017).
Gryspeerdt, E., Smith, T. W. P., O’Keeffe, E., Christensen, M. W. & Goldsworth, F. W. The impact of ship emission controls recorded by cloud properties. Geophys. Res. Lett. 46, 12547–12555 (2019).
Watson-Parris, D. et al. Shipping regulations lead to large reduction in cloud perturbations. Proc. Natl Acad. Sci. USA 119, e2206885119 (2022).
Quaas, J., Boucher, O. & Lohmann, U. Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmos. Chem. Phys. 6, 947–955 (2006).
Quaas, J. et al. Aerosol indirect effects—general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys. 9, 8697–8717 (2009).
Rosenfeld, D. et al. Global observations of aerosol–cloud–precipitation–climate interactions. Rev. Geophys. 52, 750–808 (2014).
Bellouin, N. et al. Bounding global aerosol radiative forcing of climate change. Rev. Geophys. 58, e2019RG000660 (2020).
Stephens, G. et al. CloudSat and CALIPSO within the A-Train: ten years of actively observing the Earth system. Bull. Am. Meteorol. Soc. 99, 569–581 (2018).
Platnick, S. et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 55, 502–525 (2017).
Suzuki, K., Nakajima, T. Y. & Stephens, G. L. Particle growth and drop collection efficiency of warm clouds as inferred from joint CloudSat and MODIS observations. J. Atmos. Sci. 67, 3019–3032 (2010).
Mulmenstadt, J., Sourdeval, O., Delanoe, J. & Quaas, J. Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett. 42, 6502–6509 (2015).
Malavelle, F. F. et al. Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature 546, 485–491 (2017).
Christensen, M. W. & Stephens, G. L. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: 2. Impacts of haze on precipitating clouds. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017125 (2012).
McCoy, D. T. et al. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations. Atmos. Chem. Phys. 18, 5821–5846 (2018).
Gryspeerdt, E. et al. Surprising similarities in model and observational aerosol radiative forcing estimates. Atmos. Chem. Phys. 20, 613–623 (2020).
Jiang, H., Xue, H., Teller, A., Feingold, G. & Levin, Z. Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026024 (2006).
Zhou, C. & Penner, J. E. Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM. Atmos. Chem. Phys. 17, 21–29 (2017).
Koren, I., Dagan, G. & Altaratz, O. From aerosol-limited to invigoration of warm convective clouds. Science 344, 1143–1146 (2014).
Seiki, T. & Nakajima, T. Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci. 71, 833–853 (2014).
Sheffield, A. M., Saleeby, S. M. & van den Heever, S. C. Aerosol-induced mechanisms for cumulus congestus growth. J. Geophys. Res. Atmos. 120, 8941–8952 (2015).
Xue, H. & Feingold, G. Large-eddy simulations of trade wind cumuli: investigation of aerosol indirect effects. J. Atmos. Sci. 63, 1605–1622 (2006).
Stevens, B. & Seifert, A. Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection. J. Meteorol. Soc. Jpn. 2 86A, 143–162 (2008).
Dagan, G., Koren, I. & Altaratz, O. Aerosol effects on the timing of warm rain processes. Geophys. Res. Lett. 42, 4590–4598 (2015).
Dagan, G., Koren, I. & Altaratz, O. Competition between core and periphery-based processes in warm convective clouds—from invigoration to suppression. Atmos. Chem. Phys. 15, 2749–2760 (2015).
Kogan, Y. L. & Martin, W. J. Parameterization of bulk condensation in numerical cloud models. J. Atmos. Sci. 51, 1728–1739 (1994).
Seifert, A. & Heus, T. Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmos. Chem. Phys. 13, 5631–5645 (2013).
Dagan, G., Koren, I., Altaratz, O. & Lehahn, Y. Shallow convective cloud field lifetime as a key factor for evaluating aerosol effects. iScience 10, 192–202 (2018).
Spill, G., Stier, P., Field, P. R. & Dagan, G. Effects of aerosol in simulations of realistic shallow cumulus cloud fields in a large domain. Atmos. Chem. Phys. 19, 13507–13517 (2019).
Chen, Y. C., Christensen, M. W., Stephens, G. L. & Seinfeld, J. H. Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds. Nat. Geosci. 7, 643–646 (2014).
Khain, A., Rosenfeld, D. & Pokrovsky, A. Aerosol impact on the dynamics and microphysics of deep convective clouds. Q. J. R. Meteorol. Soc. 131, 2639–2663 (2005).
van den Heever, S. C., Carrio, G. G., Cotton, W. R., DeMott, P. J. & Prenni, A. J. Impacts of nucleating aerosol on Florida storms. Part I: mesoscale simulations. J. Atmos. Sci. 63, 1752–1775 (2006).
Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).
Tao, W. K., Chen, J. P., Li, Z. Q., Wang, C. & Zhang, C. D. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. https://doi.org/10.1029/2011rg000369 (2012).
Koren, I. et al. Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat. Geosci. 5, 118–122 (2012).
Koren, I., Kaufman, Y. J., Rosenfeld, D., Remer, L. A. & Rudich, Y. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett. https://doi.org/10.1029/2005GL023187 (2005).
Clavner, M., Cotton, W. R., van den Heever, S. C., Saleeby, S. M. & Pierce, J. R. The response of a simulated mesoscale convective system to increased aerosol pollution: part I: precipitation intensity, distribution, and efficiency. Atmos. Res. 199, 193–208 (2018).
Storer, R. L. & Van den Heever, S. C. Microphysical processes evident in aerosol forcing of tropical deep convective clouds. J. Atmos. Sci. 70, 430–446 (2013).
Wang, C. A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004jd005720 (2005).
Chua, X. R. & Ming, Y. Convective invigoration traced to warm-rain microphysics. Geophys. Res. Lett. https://doi.org/10.1029/2020GL089134 (2020).
Lee, S. S., Donner, L. J., Phillips, V. T. J. & Ming, Y. Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment. Q. J. R. Meteorol. Soc. 134, 1201–1220 (2008).
Grant, L. D. & van den Heever, S. C. Cold pool and precipitation responses to aerosol loading: modulation by dry layers. J. Atmos. Sci. 72, 1398–1408 (2015).
Varble, A. C., Igel, A. L., Morrison, H., Grabowski, W. W. & Lebo, Z. J. Opinion: a critical evaluation of the evidence for aerosol invigoration of deep convection. Atmos. Chem. Phys. 23, 13791–13808 (2023).
Fan, J. W. et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 359, 411–418 (2018).
Romps, D. M. et al. Air pollution unable to intensify storms via warm-phase invigoration. Geophys. Res. Lett. https://doi.org/10.1029/2022gl100409 (2023).
Abbott, T. H. & Cronin, T. W. Aerosol invigoration of atmospheric convection through increases in humidity. Science 371, 83–85 (2021).
Dagan, G. et al. Boundary conditions representation can determine simulated aerosol effects on convective cloud fields. Commun. Earth Environ. 3, 71 (2022).
White, B. et al. Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects. Atmos. Chem. Phys. 17, 12145–12175 (2017).
Heikenfeld, M., White, B., Labbouz, L. & Stier, P. Aerosol effects on deep convection: the propagation of aerosol perturbations through convective cloud microphysics. Atmos. Chem. Phys. 19, 2601–2627 (2019).
Storer, R. L., van den Heever, S. C. & Stephens, G. L. Modeling aerosol impacts on convective storms in different environments. J. Atmos. Sci. 67, 3904–3915 (2010).
Miltenberger, A. K. et al. Aerosol–cloud interactions in mixed-phase convective clouds—part 1: aerosol perturbations. Atmos. Chem. Phys. 18, 3119–3145 (2018).
Lee, S. S., Donner, L. J. & Penner, J. E. Thunderstorm and stratocumulus: how does their contrasting morphology affect their interactions with aerosols? Atmos. Chem. Phys. 10, 6819–6837 (2010).
Grabowski, W. W. Untangling microphysical impacts on deep convection applying a novel modeling methodology. J. Atmos. Sci. 72, 2446–2464 (2015).
Marinescu, P. J. et al. Impacts of varying concentrations of cloud condensation nuclei on deep convective cloud updrafts—a multimodel assessment. J. Atmos. Sci. 78, 1147–1172 (2021).
Igel, A. L. & van den Heever, S. C. Invigoration or enervation of convective clouds by aerosols? Geophys. Res. Lett. 48, e2021GL093804 (2021).
Connolly, P. J. et al. Cloud-resolving simulations of intense tropical Hector thunderstorms: implications for aerosol-cloud interactions. Q. J. R. Meteorol. Soc. 132, 3079–3106 (2006).
Pan, Z. X. et al. Observational quantification of aerosol invigoration for deep convective cloud lifecycle properties based on geostationary satellite. J. Geophys. Res. Atmos. https://doi.org/10.1029/2020JD034275 (2021).
Kipling, Z., Labbouz, L. & Stier, P. Global response of parameterised convective cloud fields to anthropogenic aerosol forcing. Atmos. Chem. Phys. 20, 4445–4460 (2020).
Lohmann, U. Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM. Atmos. Chem. Phys. 8, 2115–2131 (2008).
Choi, Y. S., Lindzen, R. S., Ho, C. H. & Kim, J. Space observations of cold-cloud phase change. Proc. Natl Acad. Sci. USA 107, 11211–11216 (2010).
Stevens, R. G. et al. A model intercomparison of CCN-limited tenuous clouds in the high Arctic. Atmos. Chem. Phys. 18, 11041–11071 (2018).
Lohmann, U. A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett. https://doi.org/10.1029/2001GL014357 (2002).
Vergara-Temprado, J. et al. Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles. Proc. Natl Acad. Sci. USA 115, 2687–2692 (2018).
Glassmeier, F. & Lohmann, U. Precipitation susceptibility and aerosol buffering of warm- and mixed-phase orographic clouds in idealized simulations. J. Atmos. Sci. 75, 1173–1194 (2018).
French, J. R. et al. Precipitation formation from orographic cloud seeding. Proc. Natl Acad. Sci. USA 115, 1168–1173 (2018).
National Research Council. Critical Issues In Weather Modification Research (National Academies Press, 2003).
Benjamini, Y. et al. The Israel 4 cloud seeding experiment: primary results. J. Appl. Meteorol. Climatol. 62, 317–327 (2023).
Korolev, A. & Leisner, T. Review of experimental studies of secondary ice production. Atmos. Chem. Phys. 20, 11767–11797 (2020).
Khain, A. P. Notes on state-of-the-art investigations of aerosol effects on precipitation: a critical review. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/4/1/015004 (2009).
Miltenberger, A. K., Field, P. R., Hill, A. A., Shipway, B. J. & Wilkinson, J. M. Aerosol–cloud interactions in mixed-phase convective clouds—part 2: meteorological ensemble. Atmos. Chem. Phys. 18, 10593–10613 (2018).
Schutgens, N. et al. On the spatio-temporal representativeness of observations. Atmos. Chem. Phys. 17, 9761–9780 (2017).
Liu, H. et al. Non-monotonic aerosol effect on precipitation in convective clouds over tropical oceans. Sci. Rep. 9, 7809 (2019).
Quaas, J., Stevens, B., Stier, P. & Lohmann, U. Interpreting the cloud cover–aerosol optical depth relationship found in satellite data using a general circulation model. Atmos. Chem. Phys. 10, 6129–6135 (2010).
Textor, C. et al. The effect of harmonized emissions on aerosol properties in global models—an AeroCom experiment. Atmos. Chem. Phys. 7, 4489–4501 (2007).
Stier, P. Limitations of passive satellite remote sensing to constrain global cloud condensation nuclei. Atmos. Chem. Phys. 15, 32607–32637 (2015).
Grandey, B. S., Gururaj, A., Stier, P. & Wagner, T. M. Rainfall–aerosol relationships explained by wet scavenging and humidity. Geophys. Res. Lett. 41, 5678–5684 (2014).
Gryspeerdt, E., Stier, P., White, B. A. & Kipling, Z. Wet scavenging limits the detection of aerosol effects on precipitation. Atmos. Chem. Phys. 15, 7557–7570 (2015).
Gryspeerdt, E. & Stier, P. Regime-based analysis of aerosol–cloud interactions. Geophys. Res. Lett. https://doi.org/10.1029/2012gl053221 (2012).
Gryspeerdt, E., Stier, P. & Partridge, D. G. Links between satellite-retrieved aerosol and precipitation. Atmos. Chem. Phys. 14, 9677–9694 (2014).
Storer, R. L., van den Heever, S. C. & L’Ecuyer, T. S. Observations of aerosol-induced convective invigoration in the tropical east Atlantic. J. Geophys. Res. Atmos. 119, 3963–3975 (2014).
Berg, W., L’Ecuyer, T. & van den Heever, S. Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD009649 (2008).
Christensen, M. W. et al. Opportunistic experiments to constrain aerosol effective radiative forcing. Atmos. Chem. Phys. 22, 641–674 (2022).
Coakley, J. A., Bernstein, R. L. & Durkee, P. A. Effect of ship-stack effluents on cloud reflectivity. Science 237, 1020–1022 (1987).
Christensen, M. W., Coakley, J. A. & Tahnk, W. R. Morning-to-afternoon evolution of marine stratus polluted by underlying ships: implications for the relative lifetimes of polluted and unpolluted clouds. J. Atmos. Sci. 66, 2097–2106 (2009).
Manshausen, P., Watson-Parris, D., Christensen, M. W., Jalkanen, J.-P. & Stier, P. Invisible ship tracks show large cloud sensitivity to aerosol. Nature 610, 101–106 (2022).
Suzuki, K., Stephens, G. L., Heever, S. C. V. D. & Nakajima, T. Y. Diagnosis of the warm rain process in cloud-resolving models using joint CloudSat and MODIS observations. J. Atmos. Sci. 68, 2655–2670 (2011).
Thornton, J. A., Virts, K. S., Holzworth, R. H. & Mitchell, T. P. Lightning enhancement over major oceanic shipping lanes. Geophys. Res. Lett. 44, 9102–9111 (2017).
Blossey, P. N., Bretherton, C. S., Thornton, J. A. & Virts, K. S. Locally enhanced aerosols over a shipping lane produce convective invigoration but weak overall indirect effects in cloud-resolving simulations. Geophys. Res. Lett. 45, 9305–9313 (2018).
Berg, W., L’Ecuyer, T. & Kummerow, C. Rainfall climate regimes: the relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteorol. Climatol. 45, 434–454 (2006).
Hegerl, G. C. et al. Challenges in quantifying changes in the global water cycle. Bull. Am. Meteorol. Soc. 96, 1097–1115 (2015).
Polson, D., Bollasina, M., Hegerl, G. C. & Wilcox, L. J. Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols. Geophys. Res. Lett. 41, 6023–6029 (2014).
Sarojini, B. B., Stott, P. A. & Black, E. Detection and attribution of human influence on regional precipitation. Nat. Clim. Change 6, 669–675 (2016).
Paik, S. et al. Determining the anthropogenic greenhouse gas contribution to the observed intensification of extreme precipitation. Geophys. Res. Lett. 47, e2019GL086875 (2020).
Wilcox, L. J., Dong, B., Sutton, R. T. & Highwood, E. J. The 2014 hot, dry summer in Northeast Asia. Bull. Am. Meteorol. Soc. 96, S105–S110 (2015).
Wilcox, L. J. et al. Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. Atmos. Chem. Phys. 20, 11955–11977 (2020).
Deser, C. et al. Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: a new CESM1 large ensemble community resource. J. Clim. 33, 7835–7858 (2020).
Reddington, C. et al. The Global Aerosol Synthesis and Science Project (GASSP): observations and modelling to reduce uncertainty. Bull. Am. Meteorol. Soc. 98, 1857–1877 (2017).
Kahn, R. A. et al. SAM-CAAM: a concept for acquiring systematic aircraft measurements to characterize aerosol air masses. Bull. Am. Meteorol. Soc. 98, 2215–2228 (2017).
Wehr, T. et al. The EarthCARE mission — science and system overview. Atmos. Meas. Tech. 16, 3581–3608 (2023).
Medeiros, B. Aquaplanets as a framework for examination of aerosol effects. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2019MS001874 (2020).
Dingley, B., Dagan, G. & Stier, P. Forcing convection to aggregate using diabatic heating perturbations. J. Adv. Model. Earth Syst. https://doi.org/10.1029/2021MS002579 (2021).
Stevens, B. et al. DYAMOND: the dynamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci. 6, 61 (2019).
Bauer, P., Stevens, B. & Hazeleger, W. A digital twin of Earth for the green transition. Nat. Clim. Change 11, 80–83 (2021).
Gillett, N. P. et al. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3685–3697 (2016).
Giorgetta, M. A. et al. ICON-A, the atmosphere component of the ICON Earth system model: I. Model description. J. Adv. Model. Earth Syst. 10, 1613–1637 (2018).
Acknowledgements
This review builds on an expert workshop of the Global Energy and Water Cycle Exchanges (GEWEX) Aerosol Precipitation (GAP) initiative hosted by the University of Oxford with support of the European Research Council (ERC) project Constraining the Effects of Aerosols on Precipitation (RECAP) under the European Union’s Horizon 2020 research and innovation programme with grant agreement no. 724602. P.S. acknowledges support by the Alexander von Humboldt Foundation. S.C.v.d.H. acknowledges support from NASA grant 80NSSC18K0149. A.M.L.E., U.L., J.Q. and P.S. acknowledge funding by the FORCeS project under the European Union’s Horizon 2020 research programme with grant agreement 821205. J.Q. acknowledges funding by the BMBF project PATTERA (FKZ 01LP1902C). G.M. acknowledges support from the Research Council of Norway project SUPER (no. 250573). E.G. was supported by a Royal Society University Research Fellowship (URF/R1/191602). S.M.S. was supported by the US Department of Energy Atmospheric System Research grant no. DE-SC0021160. K.E. was supported by the National Science Foundation under grant AGS-1906768. M.W.C. acknowledges support from the Pacific Northwest National Laboratory operated for the US Department of Energy by Battelle Memorial Institute under contract no. DE-AC05-76RL01830. We thank D. Watson-Parris for providing CMIP6 precipitation data and helpful feedback. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6 and thank the modelling groups for making available their model output, the Earth System Grid Federation (ESGF) for archiving and providing access, and multiple funding agencies supporting CMIP6 and ESGF.
Author information
Authors and Affiliations
Contributions
P.S. and S.C.v.d.H. developed the structure of the GEWEX Aerosol Preciptiation Initiative workshop programme providing the basis for this review paper. M.W.C. and E.G. served as raporteurs providing detailed meeting notes. P.S. and S.C.v.d.H. drafted the first version of the manuscript that was extended with contributions from M.W.C., E.G., G.D., M.B., L.D., K.E., A.M.L.E., G.F., P. Field, P. Forster, J.H., R.K., I.K., C.K., T.L., U.L., Y.M., G.M., J.Q., D.R., B.S., A.S., G.S. and W.-K.T. to the literature review, the synthesis of the results and the revised manuscript. G.D. created Figs. 1 and 3. P.S. created Fig. 2. S.M.S created Fig. 4.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Pier Luigi Vidale and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Stier, P., van den Heever, S.C., Christensen, M.W. et al. Multifaceted aerosol effects on precipitation. Nat. Geosci. 17, 719–732 (2024). https://doi.org/10.1038/s41561-024-01482-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-024-01482-6