Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Role of folding-related deformation in the seismicity of shallow accretionary prisms

Abstract

The sources of shallow slow earthquakes at subduction zone fronts remain unclear, but are commonly attributed to faults and shear zones. Structural studies of modern and ancient shallow accretionary prisms — wedge-shaped stacks of sediments and volcanic deposits scraped from subducting slabs and accreted onto the overriding plates at convergent plate boundaries — document a plethora of brittle structures associated with metres to plurikilometre-scale overturned and recumbent folds. These folds are the product of rock buckling and shearing at the front of subduction zones. At present, such structures are not commonly considered in models of the dynamics of accretionary wedges at the timescale of the seismic cycle, instead focusing on the role played by slip on major faults. Here we argue that fold-related brittle structures might also be associated with transient deformation events at elevated strain rates and in the presence of high fluid pressure. They have the potential to cause distributed microearthquake swarms occurring under low effective normal stress in accretionary prisms, and to affect the distribution of surficial displacement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of shallow accretionary prisms and conceptual endmembers of internal deformation.
Fig. 2: Overturned and recumbent folding in ancient and modern accretionary prisms.
Fig. 3: Field examples of folds and related boudinaged structures.
Fig. 4: Evolutionary model of the development of recumbent folds and associated brittle structures, and implications for seismicity distribution.

Similar content being viewed by others

References

  1. Saffer, D. M. & Wallace, L. M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci. 8, 594–600 (2015).

    Article  CAS  Google Scholar 

  2. Peng, Z. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 3, 599–607 (2010).

    Article  CAS  Google Scholar 

  3. Behr, W. M. & Bürgmann, R. What’s down there? The structures, materials and environment of deep-seated slow slip and tremor. Phil. Trans. R. Soc. A 379, 20200218 (2021).

    Article  Google Scholar 

  4. Fagereng, Å. & Sibson, R. H. Melange rheology and seismic style. Geology 38, 751–754 (2010).

    Article  Google Scholar 

  5. Oncken, O., Angiboust, S. & Dresen, G. Slow slip in subduction zones: reconciling deformation fabrics with instrumental observations and laboratory results. Geosphere 18, 104–129 (2022).

    Article  Google Scholar 

  6. Dielforder, A., Vollstaedt, H., Vennemann, T., Berger, A. & Herwegh, M. Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex. Nat. Commun. 6, 7504 (2015).

    Article  CAS  Google Scholar 

  7. Strasser, M. et al. Origin and evolution of a splay fault in the Nankai accretionary wedge. Nat. Geosci. 2, 648–652 (2009).

    Article  CAS  Google Scholar 

  8. Barker, D. H. N. et al. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the North Hikurangi Subduction Zone, New Zealand. Geophys. Res. Lett. 45, 12,804–12,813 (2018).

    Article  Google Scholar 

  9. Bastida, F. et al. Recumbent folds: key structural elements in orogenic belts. Earth Sci. Rev. 135, 162–183 (2014).

    Article  Google Scholar 

  10. Perrin, C. et al. Impact of erosion and décollements on large-scale faulting and folding in orogenic wedges: analogue models and case studies. J. Geol. Soc. 170, 893–904 (2013).

    Article  Google Scholar 

  11. Butler, R. W. H., Bond, C. E., Cooper, M. A. & Watkins, H. Fold–thrust structures—where have all the buckles gone? Geol. Soc. Spec. Publ. 487, 21–44 (2020).

    Article  Google Scholar 

  12. Bettelli, G. & Vannucchi, P. Structural style of the offscraped Ligurian oceanic sequences of the Northern Apennines: new hypothesis concerning the development of mélange block-in-matrix fabric. J. Struct. Geol. 25, 371–388 (2003).

    Article  Google Scholar 

  13. Nirta, G. & Principi, G. The Ligurian Units of Western Tuscany (Northern Apennines): insight on the influence of pre-existing weakness zones during ocean closure. Geodin. Acta 2, 71–97 (2007).

    Article  Google Scholar 

  14. Nirta, G., Remitti, F., Barbero, E. & Festa, A. Offscraping and shallow ophiolite accretion in the Ligurian Accretionary Wedge (Tuscan Apennines): role of seafloor structural inheritance. J. Geol. Soc. 181, jgs2023-189 (2024).

    Article  Google Scholar 

  15. Speed, R. C. Structure of the accretionary complex of Barbados, I: Chalky Mount. GSA Bull. 94, 92–116 (1983).

    Article  Google Scholar 

  16. Raymond, L. A., Ogawa, Y. & Maddock, M. E. Accretionary unit formats in subduction complexes: examples from the Franciscan and Miura-Boso complexes. Int. Geol. Rev. 62, 1581–1609 (2020).

    Article  Google Scholar 

  17. Hibbard, J. & Karig, D. E. Sheath-like folds and progressive fold deformation in tertiary sedimentary rocks of the Shimanto accretionary complex, Japan. J. Struct. Geol. 9, 845–857 (1987).

    Article  Google Scholar 

  18. Price, A. E. & Cosgrove, J. W. Analysis of Geological Structures (Cambridge Univ. Press, 1990).

  19. Festa, A., Pini, G. A., Ogata, K. & Dilek, Y. Diagnostic features and field-criteria in recognition of tectonic, sedimentary and diapiric mélanges in orogenic belts and exhumed subduction-accretion complexes. Gondwana Res. 74, 7–30 (2019).

    Article  Google Scholar 

  20. Alsop, G. I. et al. Progressive fold and fabric evolution associated with regional strain gradients: a case study from across a Scandian ductile thrust nappe, Scottish Caledonides. Geol. Soc. Spec. Publ. 335, 255–274 (2010).

    Article  Google Scholar 

  21. Ramsay, J. G. & Huber, M. I. The Techniques of Modern Structural Geology (Academic Press, 1983).

  22. Vannucchi, P. & Bettelli, G. Mechanisms of subduction accretion as implied from the broken formations in the Apennines, Italy. Geology 30, 835–838 (2002).

    Article  Google Scholar 

  23. Vannucchi, P., Remitti, F. & Bettelli, G. Geological record of fluid flow and seismogenesis along an erosive subducting plate boundary. Nature 451, 699–703 (2008).

    Article  CAS  Google Scholar 

  24. Mittempergher, S., Cerchiari, A., Remitti, F. & Festa, A. From soft sediment deformation to fluid assisted faulting in the shallow part of a subduction megathrust analogue: the Sestola Vidiciatico tectonic Unit (Northern Apennines, Italy). Geol. Mag. 155, 438–450 (2018).

    Article  CAS  Google Scholar 

  25. Brown, K. & Behrmann, J. Genesis and evolution of small-scale structures in the toe of the Barbados Ridge accretionary wedge. Proc. ODP Sci. Results 110, 229–244 (1990).

    Google Scholar 

  26. Moore, J. C. & Karig, D. L. Sedimentology, structural geology and tectonics of the Shikoku subduction zone, southwestern Japan. GSA Bull. 87, 1259–1268 (1976).

    Article  Google Scholar 

  27. Kawamura, K. & Ogawa, Y. Internal structure, active tectonics and dynamic topography of the eastern Nankai accretionary prism toe, Japan, and its tsunamigenic potential. Geol. Mag. 158, 30–38 (2021).

    Article  Google Scholar 

  28. Kirkpatrick, J. D. et al. Structure and lithology of the Japan Trench subduction plate boundary fault. Tectonics 34, 53–69 (2015).

    Article  Google Scholar 

  29. Chester, F. M. et al. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake. Science 342, 1208–1211 (2013).

    Article  CAS  Google Scholar 

  30. Regalla, C., Bierman, P. & Rood, D. H. Meteoric 10Be reveals a young, active accretionary prism and structurally complex décollement in the vicinity of the 2011 Tohoku earthquake rupture. Geochem. Geophys. Geosyst. 20, 4956–4971 (2019).

    Article  CAS  Google Scholar 

  31. Chester, F. M. & Moore, J. C. in Geology and Tectonics of Subduction Zones: A Tribute to Gaku Kimura Vol. 534 (ed. Byrne, T. et al.) 101–113 (Geological Society of America, 2018).

  32. Chester, F. M., More, J., Eguchi, N., Toczko, S. & Expedition 343/343T Scientists. Site C0019. In Proc. Integrated Ocean Drilling Program 343/343T (Integrated Ocean Drilling Program Management International, 2013).

  33. Morgan, J. K. et al. Seafloor overthrusting causes ductile fault deformation and fault sealing along the Northern Hikurangi Margin. Earth Planet. Sci. Lett. 593, 117651 (2022).

    Article  CAS  Google Scholar 

  34. Nelson, K. D. A suggestion for the origin of mesoscopic fabric in accretionary melange, based on features observed in the Chrystalls Beach Complex, South Island, New Zealand. Geol. Soc. Am. Bull. 93, 625–634 (1982).

    Article  Google Scholar 

  35. Fisher, D. & Byrne, T. Structural evolution of underthrusted sediments, Kodiak Islands, Alaska. Tectonics 6, 775–793 (1987).

    Article  Google Scholar 

  36. Kimura, G. & Mukai, A. Underplated units in an accretionary complex: mélange of the Shimanto Belt of Eastern Shikoku, Southwest Japan. Tectonics 10, 31–50 (1991).

    Article  Google Scholar 

  37. Kimura, G. et al. Tectonic mélange as fault rock of subduction plate boundary. Tectonophysics 568–569, 25–38 (2012).

    Article  Google Scholar 

  38. Ramsay, J. G. The crack-seal mechanism of rock deformation. Nature 284, 135–139 (1980).

    Article  Google Scholar 

  39. Cowan, D. S. Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. GSA Bull. 96, 451–462 (1985).

    Article  Google Scholar 

  40. Secor, D. T. Role of fluid pressure in jointing. Am. J. Sci. 263, 633–646 (1965).

    Article  Google Scholar 

  41. Moore, D. E. & Lockner, D. A. Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. J. Geophys. Res. 109, B03401 (2004).

    Google Scholar 

  42. Remitti, F., Smith, S. A. F., Mittempergher, S., Gualtieri, A. F. & Di Toro, G. Frictional properties of fault zone gouges from the J-FAST drilling project (Mw 9.0 2011 Tohoku-Oki earthquake). Geophys. Res. Lett. 42, 2691–2699 (2015).

    Article  Google Scholar 

  43. Aretusini, S., Spagnuolo, E., Dalconi, M. C., Di Toro, G. & Rutter, E. H. Water availability and deformation processes in smectite-rich gouges during seismic slip. J. Geophys. Res. Solid Earth 124, 10855–10876 (2019).

    Article  Google Scholar 

  44. Ujiie, K. et al. Low coseismic shear stress on the Tohoku-Oki Megathrust determined from laboratory experiments. Science 342, 1211–1214 (2013).

    Article  CAS  Google Scholar 

  45. Vannucchi, P. Scaly fabric and slip within fault zones. Geosphere 15, 342–356 (2019).

    Article  Google Scholar 

  46. Moore, J. C. et al. Scaly fabrics from deep sea drilling project cores from forearcs. In Structural Fabrics in Deep Sea Drilling Project Cores From Forearcs Vol. 166 (ed. Moore, J. C.) 55–73 (Geological Society of America, 1986).

  47. Moore, J. C. & Byrne, T. Thickening of fault zones: a mechanism of mélange formation in accreting sediments. Geology 15, 1040–1043 (1987).

    Article  Google Scholar 

  48. Phillips, N. J., Belzer, B., French, M. E., Rowe, C. D. & Ujiie, K. Frictional strengths of subduction thrust rocks in the region of shallow slow earthquakes. J. Geophys. Res. Solid Earth 125, 1–20 (2020).

    Article  Google Scholar 

  49. Jaeggi, D., Laurich, B., Nussbaum, C., Schuster, K. & Connolly, P. Tectonic structure of the ‘Main Fault’ in the Opalinus Clay, Mont Terri rock laboratory (Switzerland). Swiss J. Geosci. 110, 67–84 (2017).

    Article  CAS  Google Scholar 

  50. Fernández, F. J., Aller, J. & Bastida, F. Kinematics of a kilometric recumbent fold: the Courel syncline (Iberian massif, NW Spain). J. Struct. Geol. 29, 1650–1664 (2007).

    Article  Google Scholar 

  51. Aller, J., Bobillo-Ares, N. C., Bastida, F., Lisle, R. J. & Menéndez, C. O. Kinematic analysis of asymmetric folds in competent layers using mathematical modelling. J. Struct. Geol. 32, 1170–1184 (2010).

    Article  Google Scholar 

  52. Collettini, C., Barchi, M. R., De Paola, N., Trippetta, F. & Tinti, E. Rock and fault rheology explain differences between on fault and distributed seismicity. Nat. Commun. 13, 5627 (2022).

    Article  CAS  Google Scholar 

  53. Reber, J. E., Lavier, L. L. & Hayman, N. W. Experimental demonstration of a semi-brittle origin for crustal strain transients. Nat. Geosci. 8, 712–715 (2015).

    Article  CAS  Google Scholar 

  54. Lavier, L. L., Tong, X. & Biemiller, J. The mechanics of creep, slow slip events and earthquakes in mixed brittle‐ductile fault zones. J. Geophys. Res. Solid Earth 126, e2020JB020325 (2021).

    Article  Google Scholar 

  55. Mallick, R., Bürgmann, R., Johnson, K. & Hubbard, J. A unified framework for earthquake sequences and the growth of geological structure in fold‐thrust belts. J. Geophys. Res. Solid Earth 126, e2021JB022045 (2021).

    Article  Google Scholar 

  56. Saffer, D. M. & Tobin, H. J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39, 157–186 (2011).

    Article  CAS  Google Scholar 

  57. Remitti, F., Bettelli, G., Panini, F., Carlini, M. & Vannucchi, P. in The Geological Society of America Field Guide 1–33 (Geological Society of America, 2012).

  58. Ramsay, J. G. & Huber, M. I. The Techniques of Modern Structural Geology: Folds and Fractures (Academic Press, 1987).

Download references

Acknowledgements

We thank G. Bettelli for sharing his invaluable work on the Northern Apennines. The manuscript benefited from discussion with F. Panini, P. Vannucchi, D. Brunelli and many others. We thank E. Telani for the sample in Fig. 3b. F.R. acknowledges support for the research of this work from Unimore FAR. This study was financially supported by research grants from the Italian Ministry of University and Research (Cofin-PRIN 2020 ‘POEM project—POligEnetic Melanges: anatomy, significance and societal impact’, grant no. 2020542ET7_003 to A.F.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception of the work. F.R., A.F., G.N. and S.M. wrote the paper and produced the figures. E.B. provided comments and additions to the text.

Corresponding author

Correspondence to Francesca Remitti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Armin Dielforder and Donald Fisher for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remitti, F., Festa, A., Nirta, G. et al. Role of folding-related deformation in the seismicity of shallow accretionary prisms. Nat. Geosci. 17, 600–607 (2024). https://doi.org/10.1038/s41561-024-01474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01474-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing