Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Segregation of a thermochemical anomaly and coalescence with a large low-velocity province

Abstract

Thermochemical anomalies on the core–mantle boundary, including the Africa and Pacific large low-velocity provinces, exert a first-order control on mantle dynamics. However, due to limited observational constraints, their mobility and evolution remain poorly understood. Here we report an intermediate-scale thermochemical anomaly beneath the Northwest Pacific Ocean on the basis of existing tomographic models and use palaeogeographically constrained numerical models to study its evolution. Considering different plate configurations in the North Pacific, our models consistently show that this anomaly, named the Kamchatka anomaly, was separated from the intermediate-scale Perm thermochemical anomaly by the subduction of the Izanagi slab in the Cretaceous period. After the separation, it could have generated a mantle plume with the remaining thermochemical anomaly migrating towards the Pacific large low-velocity province. We propose that intermediate-scale low-velocity structures constantly undergo segregation and coalescing, and may be the sources of plumes that lie outside the two major large low-velocity provinces. Merging of the reported anomaly with the Pacific large low-velocity province suggests the latter is still under assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Seismic velocity structure in the lowermost mantle and beneath the NW Pacific.
Fig. 2: The evolution of the lower mantle structures from 160 Ma to the present day.
Fig. 3: Spatial match between flow models and S-/P-wave tomography vote maps.
Fig. 4: Schematic illustration showing the interplay between the deep mantle and the surface tectonics.

Similar content being viewed by others

Data availability

Data generated for this study are available via Zenodo at https://doi.org/10.5281/zenodo.10939604 (ref. 66). The tomographic model depth slices and cross sections are sourced from Submachine (https://www.earth.ox.ac.uk/~smachine/cgi/index.php) and IRIS EMC (https://ds.iris.edu/ds/products/emc-earthmodels/).

Code availability

The computational code CitcomS is available at https://github.com/geodynamics/citcoms/. The plate kinematic tool GPlates and its python version can be accessed at www.gplates.org/. The vote map is created by SubMachine.

References

  1. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).

    Article  CAS  Google Scholar 

  2. French, S. W. & Romanowicz, B. A. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199, 1303–1327 (2014).

    Article  Google Scholar 

  3. Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357, 68–77 (2012).

    Article  Google Scholar 

  4. Ritsema, J., Deuss, A., Van Heijst, H. J. & Woodhouse, J. H. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  5. Simmons, N. A., Forte, A. M., Boschi, L. & Grand, S. P. GyPSuM: a joint tomographic model of mantle density and seismic wave speeds. J. Geophys. Res. Solid Earth 115, B12310 (2010).

    Article  Google Scholar 

  6. Garnero, E. J., McNamara, A. K. & Shim, S. H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article  CAS  Google Scholar 

  7. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  CAS  Google Scholar 

  8. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

    Article  CAS  Google Scholar 

  9. Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).

    Article  CAS  Google Scholar 

  10. Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–482 (2013).

    Article  CAS  Google Scholar 

  11. Bunge, H. P. et al. Time scales and heterogeneous structure in geodynamic Earth models. Science 280, 91–95 (1998).

    Article  CAS  Google Scholar 

  12. McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Article  CAS  Google Scholar 

  13. Zhong, S. & Rudolph, M. L. On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic. Geochem. Geophys. Geosyst. 16, 1599–1615 (2015).

    Article  Google Scholar 

  14. Flament, N., Bodur, Ö. F., Williams, S. E. & Merdith, A. S. Assembly of the basal mantle structure beneath Africa. Nature 603, 846–851 (2022).

    Article  CAS  Google Scholar 

  15. Yuan, Q. & Li, M. Instability of the African large low-shear-wave-velocity province due to its low intrinsic density. Nat. Geosci. 15, 334–339 (2022).

    Article  CAS  Google Scholar 

  16. Bodur, Ö. F. & Flament, N. Kimberlite magmatism fed by upwelling above mobile basal mantle structures. Nat. Geosci. 16, 534–540 (2023).

  17. Hooper, P. R., Camp, V. E., Reidel, S. P. & Ross, M. E. in Plates, Plumes, and Planetary Processes (eds Foulger, G. R. & Jurdy, D. M.) https://doi.org/10.1130/2007.2430(30) (GSA, 2007).

  18. Nelson, P. L. & Grand, S. P. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves. Nat. Geosci. 11, 280–284 (2018).

    Article  CAS  Google Scholar 

  19. Flament, N., Williams, S., Müller, R. D., Gurnis, M. & Bower, D. J. Origin and evolution of the deep thermochemical structure beneath Eurasia. Nat. Commun. 8, 14164 (2017).

    Article  CAS  Google Scholar 

  20. Torsvik, T. H. & Domeier, M. Correspondence: Numerical modelling of the PERM anomaly and the Emeishan large igneous province. Nat. Commun. 8, 821 (2017).

    Article  Google Scholar 

  21. Zhang, K. J., Yan, L. L. & Ji, C. Switch of NE Asia from extension to contraction at the mid-Cretaceous: a tale of the Okhotsk oceanic plateau from initiation by the Perm anomaly to extrusion in the Mongol–Okhotsk ocean? Earth Sci. Rev. 198, 102941 (2019).

    Article  Google Scholar 

  22. Cottaar, S. & Lekic, V. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207, 1122–1136 (2016).

    Article  Google Scholar 

  23. He, Y., Wen, L. & Zheng, T. Seismic evidence for an 850 km thick low-velocity structure in the Earth’s lowermost mantle beneath Kamchatka. Geophys. Res. Lett. 41, 7073–7079 (2014).

    Article  Google Scholar 

  24. Suzuki, Y., Kawai, K., Geller, R. J., Borgeaud, A. F. E. & Konishi, K. Waveform inversion for 3-D S-velocity structure of D′′ beneath the Northern Pacific: possible evidence for a remnant slab and a passive plume. Earth Planets Space 68, 198 (2016).

    Article  Google Scholar 

  25. Suzuki, Y., Kawai, K. & Geller, R. J. Imaging paleoslabs and inferring the Clapeyron slope in D″ beneath the Northern Pacific based on high-resolution inversion of seismic waveforms for 3-D transversely isotropic structure. Phys. Earth Planet. Inter. 321, 106751 (2021).

    Article  Google Scholar 

  26. Moulik, P. & Ekström, G. An anisotropic shear velocity model of the Earth’s mantle using normal modes, body waves, surface waves and long-period waveforms. Geophys. J. Int. 199, 1713–1738 (2014).

    Article  Google Scholar 

  27. Lu, C., Grand, S. P., Lai, H. & Garnero, E. J. TX2019slab: a new P and S tomography model incorporating subducting slabs. J. Geophys. Res. Solid Earth 124, 11549–11567 (2019).

    Article  Google Scholar 

  28. Houser, C., Masters, G., Flanagan, M. & Shearer, P. Determination and analysis of long-wavelength transition zone structure using SS precursors. Geophys. J. Int. 174, 178–194 (2008).

    Article  Google Scholar 

  29. Chen, W., Wang, W. & Wei, S. Subslab ultra low velocity anomaly uncovered by and facilitating the largest deep earthquake. Nat. Commun. 15, 2754 (2024).

  30. Hu, J., Liu, L. & Zhou, Q. Reproducing past subduction and mantle flow using high-resolution global convection models. Earth Planet. Phys. 2, 189–207 (2018).

    Article  Google Scholar 

  31. Christensen, U. R. & Yuen, D. A. Layered convection induced by phase transitions. J. Geophys. Res. Solid Earth 90, 10291–10300 (1985).

    Article  Google Scholar 

  32. Fritzell, E. H., Bull, A. L. & Shephard, G. E. Closure of the Mongol–Okhotsk Ocean: insights from seismic tomography and numerical modelling. Earth Planet. Sci. Lett. 445, 1–12 (2016).

    Article  CAS  Google Scholar 

  33. Müller, R. D. et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107–138 (2016).

    Article  Google Scholar 

  34. Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019).

    Article  Google Scholar 

  35. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    Article  Google Scholar 

  36. Domeier, M. et al. Intraoceanic subduction spanned the Pacific in the Late Cretaceous–Paleocene. Sci. Adv. 3, eaao2303 (2017).

    Article  Google Scholar 

  37. Vaes, B., Van Hinsbergen, D. J. J. & Boschman, L. M. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian Basin: clues to causes of Cretaceous and Eocene plate reorganizations. Tectonics 38, 1367–1413 (2019).

    Article  Google Scholar 

  38. Wu, J., Lin, Y. A., Flament, N., Wu, J. T. J. & Liu, Y. Northwest Pacific–Izanagi plate tectonics since Cretaceous times from western Pacific mantle structure. Earth Planet. Sci. Lett. 583, 117445 (2022).

    Article  CAS  Google Scholar 

  39. Lin, Y. A., Colli, L. & Wu, J. NW Pacific–Panthalassa intra-oceanic subduction during Mesozoic times from mantle convection and geoid models. Geochem. Geophys. Geosyst. 23, e2022GC010514 (2022).

    Article  Google Scholar 

  40. Hu, J., Gurnis, M., Rudi, J., Stadler, G. & Müller, R. D. Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago. Nat. Geosci. 15, 74–78 (2022).

    Article  CAS  Google Scholar 

  41. Clennett, E. J. et al. A quantitative tomotectonic plate reconstruction of western North America and the eastern Pacific basin. Geochem. Geophys. Geosyst. 21, e2020GC009117 (2020).

    Article  Google Scholar 

  42. Merdith, A. S. et al. Extending full-plate tectonic models into deep time: linking the Neoproterozoic and the Phanerozoic. Earth Sci. Rev. 214, 103477 (2021).

    Article  Google Scholar 

  43. Wei, S. S., Shearer, P. M., Lithgow-Bertelloni, C., Stixrude, L. & Tian, D. Oceanic plateau of the Hawaiian mantle plume head subducted to the uppermost lower mantle. Science 370, 983–987 (2020).

    Article  CAS  Google Scholar 

  44. Cao, X., Flament, N., Bodur, Ö. F. & Müller, R. D. The evolution of basal mantle structure in response to supercontinent aggregation and dispersal. Sci. Rep. 11, 22967 (2021).

    Article  CAS  Google Scholar 

  45. Hassan, R., Müller, R. D., Gurnis, M., Williams, S. E. & Flament, N. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature 533, 239–242 (2016).

    Article  CAS  Google Scholar 

  46. Montelli, R., Nolet, G., Dahlen, F. A. & Masters, G. A catalogue of deep mantle plumes: new results from finite-frequency tomography. Geochem. Geophys. Geosyst. 7, Q11007 (2006).

    Article  Google Scholar 

  47. Durand, S., Debayle, E., Ricard, Y., Zaroli, C. & Lambotte, S. Confirmation of a change in the global shear velocity pattern at around 1000 km depth. Geophys. J. Int. 211, 1628–1639 (2017).

    Article  Google Scholar 

  48. Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174, 195–212 (2008).

    Article  Google Scholar 

  49. Auer, L., Boschi, L., Becker, T. W., Nissen-Meyer, T. & Giardini, D. Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. J. Geophys. Res. Solid Earth 119, 3006–3034 (2014).

    Article  Google Scholar 

  50. Lekić, V. & Romanowicz, B. Inferring upper-mantle structure by full waveform tomography with the spectral element method. Geophys. J. Int. 185, 799–831 (2011).

    Article  Google Scholar 

  51. Whittaker, J. M. et al. Long-term interaction between mid-ocean ridges and mantle plumes. Nat. Geosci. 8, 479–483 (2015).

    Article  CAS  Google Scholar 

  52. Becker, T. W. & Boschi, L. A comparison of tomographic and geodynamic mantle models. Geochem. Geophys. Geosyst.3, 1003 (2002).

    Article  Google Scholar 

  53. Zhong, S., McNamara, A., Tan, E., Moresi, L. & Gurnis, M. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008).

    Article  Google Scholar 

  54. Gurnis, M. et al. Plate tectonic reconstructions with continuously closing plates. Comput. Geosci. 38, 35–42 (2012).

    Article  Google Scholar 

  55. Tosi, N., Yuen, D. A., De Koker, N. & Wentzcovitch, R. M. Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity. Phys. Earth Planet. Inter. 217, 48–58 (2013).

    Article  Google Scholar 

  56. Leng, W. & Zhong, S. Controls on plume heat flux and plume excess temperature. J. Geophys. Res. Solid Earth 113, B04408 (2008).

    Article  Google Scholar 

  57. Zhong, S. Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature. J. Geophys. Res. Solid Earth 111, B04409 (2006).

    Article  Google Scholar 

  58. Hassan, R., Flament, N., Gurnis, M., Bower, D. J. & Müller, D. Provenance of plumes in global convection models. Geochem. Geophys. Geosyst. 16, 1465–1489 (2015).

    Article  Google Scholar 

  59. Faccenda, M., Gerya, T. V. & Burlini, L. Deep slab hydration induced by bending-related variations in tectonic pressure. Nat. Geosci. 2, 790–793 (2009).

    Article  CAS  Google Scholar 

  60. Ishii, T. & Ohtani, E. Dry metastable olivine and slab deformation in a wet subducting slab. Nat. Geosci. 14, 526–530 (2021).

    Article  CAS  Google Scholar 

  61. Čı́žková, H., van Hunen, J., van den Berg, A. P. & Vlaar, N. J. The influence of rheological weakening and yield stress on the interaction of slabs with the 670 km discontinuity. Earth Planet. Sci. Lett. 199, 447–457 (2002).

    Article  Google Scholar 

  62. Gerya, T. V., Bercovici, D. & Becker, T. W. Dynamic slab segmentation due to brittle–ductile damage in the outer rise. Nature 599, 245–250 (2021).

    Article  CAS  Google Scholar 

  63. Mohiuddin, A., Karato, S. & Girard, J. Slab weakening during the olivine to ringwoodite transition in the mantle. Nat. Geosci. 13, 170–174 (2020).

    Article  CAS  Google Scholar 

  64. Shephard, G. E., Matthews, K. J., Hosseini, K. & Domeier, M. On the consistency of seismically imaged lower mantle slabs. Sci. Rep. 7, 10976 (2017).

    Article  CAS  Google Scholar 

  65. Steinberger, B., Torsvik, T. H. & Becker, T. W. Subduction to the lower mantle—a comparison between geodynamic and tomographic models. Solid Earth 3, 415–432 (2012).

    Article  Google Scholar 

  66. Zhang, J., Hu, J. & Sun, D. Segregation of a thermochemical anomaly and coalescence with a large low-velocity province. Zenodo https://doi.org/10.5281/zenodo.10939604 (2024).

  67. Tesoniero, A., Auer, L., Boschi, L. & Cammarano, F. Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity. J. Geophys. Res. Solid Earth 120, 7789–7813 (2015).

    Article  Google Scholar 

  68. Hosseini, K. et al. Global mantle structure from multifrequency tomography using P, PP and P-diffracted waves. Geophys. J. Int. 220, 96–141 (2020).

    Article  Google Scholar 

  69. Obayashi, M. et al. Finite frequency whole mantle P wave tomography: improvement of subducted slab images. Geophys. Res. Lett. 40, 5652–5657 (2013).

    Article  Google Scholar 

  70. Simmons, N. A., Myers, S. C., Johannesson, G. & Matzel, E. LLNL-G3Dv3: global P wave tomography model for improved regional and teleseismic travel time prediction. J. Geophys. Res. Solid Earth 117, B10302 (2012).

    Article  Google Scholar 

  71. Li, C., van der Hilst, R. D., Engdahl, E. R. & Burdick, S. A new global model for P wave speed variations in Earth’s mantle. Geochem. Geophys. Geosyst. 9, Q05018 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

J.H. and J.Z. are supported by the National Key R&D Program of China through award 2023YFF0806300 and the National Natural Science Foundation of China (NSFC) through awards 42174106 and 92155307. Computations were carried out at the Center for Computational Science and Engineering at Southern University of Science and Technology. J.Z. thanks T. Chang for assistance in preparing Fig. 4.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and J.Z. conceived the study and designed the numerical experiments. J.Z. carried out the calculations. D.S. contributed to seismic analysis. All authors participated in result interpretation and paper preparation.

Corresponding author

Correspondence to Jiashun Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Nicolas Flament and Yumei He for their contribution to the peer review of this work. Primary Handling Editor: Alison Hunt, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Tomography models at the depth of 2800 km.

a-i, nine shear-wave tomography results at the depth of 2800 km used for constructing the votemap in Fig. 1a.

Extended Data Fig. 2 Vote map of nine P-wave velocity (Vp) tomographic models at 2800 km depth.

GyPSuM-P5, HMSL-P0648, PRI-P0546, Spani-P67, TX2019slab-P27, DETOX-P368, GAP-P469, LLNL_G3Dv370, and MITP0871 are used. The black circles highlight the Kamchatka and the Perm anomalies.

Extended Data Fig. 3 Iinitial temperature field and radial viscosity of flow models.

a, Temperature along an equatorial cross-section. Numbers above the colour palette represent the dimensional temperature, and numbers below the colour palette represent the non-dimensional temperature. b, Horizontally averaged initial mantle viscosity. Four different radial viscosity profiles are applied in our models. Profile 1 is utilized in Model 7, 11, and 12; Profile 2 in Model 8 and 18; Profile 3 in Model 4, 5, 9, 13, 14 and 16; and Profile 4 in Model 1, 2, 3, 6, 10, 15 and 17 (Extended Data Table 1).

Extended Data Fig. 4 Structure of the present-day lower mantle at 2800 km depth predicted by geodynamic models.

Background color represents the temperature anomaly relative to the ambient mantle. The black solid lines indicate the location of the predicted Kamchatka anomaly and the black dashed lines indicate the location of the predicted Perm anomaly. Blue outlines indicate the region with the number of votes greater than 8 of the votemap in Fig. 1a. For the Kamchatka anomaly, we adopt votes greater than 4 to outline its lateral extent because it is a relatively weak anomaly compared to the Perm anomaly and the two LLVPs. The input parameters of Model 1-18 are listed in Extended Data Table 1.

Extended Data Fig. 5 Evolution of mantle structure over time in Model 1.

a, The evolution of the temperature field at a depth of 2800 km from 180 Ma to the present day in Model 1. The Izanagi Plate separates the Kamchatka anomaly from the thermal-chemical anomaly belt located near Siberia, pushing it to the east towards the Kamchatka. The Kamchatka anomaly has made contact with the Pacific LLVP at 0 Ma. b, The mantle flow field shown at a depth of 300 km from 90 Ma to the present. The colors represent the vertical velocities, with blue indicating the subducting circum-Pacific slab, and red indicating the upwelling mantle plumes. The Kamchatka plume was formed at 85 Ma in Izanagi plate, gradually disappearing at 10 Ma, and completely disappearing at 0 Ma.

Extended Data Fig. 6 Four different plate reconstructions for the Northwestern Pacific Ocean.

C20 is short for Clennett et al.41; M19 for Müller et al.34; Lin_R4 for reconstruction 4 in Lin et al.39; Hu22 for Hu et al.40. Red lines and triangles indicate the trench and subduction polarity, IZA: Izanagi Plate; EUR: Eurasia; PAC: Pacific Plate; FAR: Farallon Plate; PAN: Panthalassa Plate; KUL: Kula Plate; KRO: Kronotsky Plate; PAN2: Panthalassa Plate 2.

Extended Data Fig. 7 Model predicted Kamchatka plume.

Small dots represent the location and age of the initial eruption of the Kamchatka plume predicted by our models.

Extended Data Fig. 8 First-order spatial correlation between model-predicted basal thermal layer and active hotspots.

The gray area indicates the high temperature area in the model where the temperature is higher than 2450 K. The red dots represent the active hotspots51. Note some models show a close correlation between basal thermal anomalies and hotspots that lie outside the two LLVPs, for example Models 3, 6, 10 and 17.

Extended Data Table 1 Boundary conditions and parameters for mantle flow models

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hu, J. & Sun, D. Segregation of a thermochemical anomaly and coalescence with a large low-velocity province. Nat. Geosci. 17, 689–696 (2024). https://doi.org/10.1038/s41561-024-01459-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01459-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing