Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Onset of the Earth’s hydrological cycle four billion years ago or earlier

Abstract

Widespread interaction between meteoric (fresh) water and emerged continental crust on the early Earth may have been key to the emergence of life, although when the hydrological cycle first started is poorly constrained. Here we use the oxygen isotopic composition of dated zircon crystals from the Jack Hills, Western Australia, to determine when the hydrological cycle commenced. The analysed zircon grains reveal two periods of magmatism at 4.0–3.9 and 3.5–3.4 billion years ago characterized by oxygen isotopic compositions below mantle values (that is,18O/16O ratios <5.3 ± 0.6‰ relative to Vienna Standard Mean Ocean Water (2 s.d)). The most negative 18O/16O ratios at around 4.0 and 3.4 billion years ago are as low as 2.0‰ and –0.1‰, respectively. Using Monte Carlo simulations, we demonstrate that such isotopically light values in zircon require the interaction of shallow crustal magmatic systems with meteoric water, which must have commenced at or before 4.0 billion years ago, contemporaneous with the oldest surviving remnant of Earth’s continental crust. The emergence of continental crust, the presence of fresh water and the start of the hydrological cycle probably facilitated the development of the environmental niches required for life fewer than 600 million years after Earth’s formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Jack Hills zircon δ18O versus age for individual magmatic grains.
Fig. 2: Zircon δ18O versus age for Jack Hills samples compared with Archaean TTG.
Fig. 3: Monte Carlo δ18O mixture models of mantle-derived melts, crustal assimilants, seawater and meteoric water.

Similar content being viewed by others

Data availability

All data necessary for evaluating the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.10781567 (ref. 81). These data are also available within this Article and its Supplementary Information. Source data are provided with this paper.

References

  1. Miyazaki, Y. & Korenaga, J. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature 603, 86–90 (2022).

    CAS  Google Scholar 

  2. Korenaga, J. Was there land on the early Earth? Life 11, 1142 (2021).

    Google Scholar 

  3. Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001).

    CAS  Google Scholar 

  4. Trail, D. & Mccollom, T. M. Relatively oxidized fluids fed Earth’s earliest hydrothermal systems. Science 379, 582–586 (2023).

    CAS  Google Scholar 

  5. Bindeman, I. N. et al. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 557, 545–548 (2018).

    CAS  Google Scholar 

  6. Wang, W. et al. Global-scale emergence of continental crust during the Mesoarchean–early Neoarchean. Geology 50, 184–188 (2022).

    CAS  Google Scholar 

  7. Djokic, T., VanKranendonk, M. J., Campbel, K. A., Walter, M. R. & Ward, C. R. Earliest signs of life on land preserved in ca. 3.5 Ga hot spring deposits. Nat. Commun. 8, 15263 (2017).

    Google Scholar 

  8. Bindeman, I. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Rev. Mineral. Geochem. 69, 445–478 (2008).

    CAS  Google Scholar 

  9. Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).

    CAS  Google Scholar 

  10. Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005).

    CAS  Google Scholar 

  11. Bindeman, I. N. Triple oxygen isotopes in evolving continental crust, granites, and clastic sediments. Rev. Mineral. Geochem. 86, 241–290 (2021).

    Google Scholar 

  12. Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. Atlas of zircon textures. Rev. Mineral. Geochem. 53, 469–500 (2003).

    CAS  Google Scholar 

  13. Cherniak, D. J. & Watson, E. B. Diffusion in zircon. Rev. Mineral. Geochem. 53, 113–143 (2003).

    CAS  Google Scholar 

  14. Johnson, T. E. et al. Giant impacts and the origin and evolution of continents. Nature 608, 330–335 (2022).

    CAS  Google Scholar 

  15. Liljestrand, F. L. et al. The triple oxygen isotope composition of Precambrian chert. Earth Planet. Sci. Lett. 537, 116167 (2020).

    CAS  Google Scholar 

  16. Lécuyer, C. & Allemand, P. Modelling of the oxygen isotope evolution of seawater: implications for the climate interpretation of the δ18O of marine sediments. Geochim. Cosmochim. Acta 63, 351–361 (1999).

    Google Scholar 

  17. Troch, J., Ellis, B. S., Harris, C., Bachmann, O. & Bindeman, I. N. Low-δ18O silicic magmas on Earth: a review. Earth Sci. Rev. 208, 103299 (2020).

    CAS  Google Scholar 

  18. Zakharov, D. O., Zozulya, D. R. & Rubatto, D. Low-δ18O Neoarchean precipitation recorded in a 2.67 Ga magmatic-hydrothermal system of the Keivy granitic complex, Russia. Earth Planet. Sci. Lett. 578, 117322 (2022).

    CAS  Google Scholar 

  19. Reimink, J. R., Chacko, T., Stern, R. A. & Heaman, L. M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 7, 529–533 (2014).

    CAS  Google Scholar 

  20. Kirkland, C. L. et al. Bimodality in zircon oxygen isotopes and implications for crustal melting on the early Earth. Earth Planet. Sci. Lett. 625, 118491 (2024).

    CAS  Google Scholar 

  21. Hiess, J., Bennett, V. C., Nutman, A. P. & Williams, I. S. Archaean fluid-assisted crustal cannibalism recorded by low δ18O and negative εHf(T) isotopic signatures of West Greenland granite zircon. Contrib. Mineral. Petrol. 161, 1027–1050 (2011).

    CAS  Google Scholar 

  22. Vezinet, A. et al. Hydrothermally-altered mafic crust as source for early Earth TTG: Pb/Hf/O isotope and trace element evidence in zircon from TTG of the Eoarchean Saglek Block, N. Labrador. Earth Planet. Sci. Lett. 503, 95–107 (2018).

    CAS  Google Scholar 

  23. Harrison, T. M., Bell, E. A. & Boehnke, P. Hadean zircon petrochronology. Rev. Mineral. Geochem. 83, 329–363 (2017).

    CAS  Google Scholar 

  24. Cavosie, A. J., Valley, J. W. & Wilde, S. A. in Earth’s Oldest Rocks (eds Van Krandendonk, M. J. et al.) 255–278 (Elsevier, 2019).

  25. Wang, Q. & Wilde, S. A. New constraints on the Hadean to proterozoic history of the Jack Hills belt, Western Australia. Gondwana Res. 55, 74–91 (2018).

    CAS  Google Scholar 

  26. Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986).

    CAS  Google Scholar 

  27. Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

    CAS  Google Scholar 

  28. Cavosie, A. J., Wilde, S. A., Liu, D., Weiblen, P. W. & Valley, J. W. Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: a mineral record of early Archean to Mesoproterozoic (4348-1576 Ma) magmatism. Precamb. Res. 135, 251–279 (2004).

  29. Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N. & McDonald, B. Zircon Th/U ratios in magmatic environs. Lithos 212–215, 397–414 (2015).

    Google Scholar 

  30. Harrison, T. M. in Hadean Earth 143–178 (Springer, 2020).

  31. Bell, E. A. & Harrison, T. M. Post-Hadean transitions in Jack Hills zircon provenance: a signal of the Late Heavy Bombardment? Earth Planet. Sci. Lett. 364, 1–11 (2013).

    CAS  Google Scholar 

  32. Bell, E. A., Boehnke, P. & Harrison, T. M. Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochim. Cosmochim. Acta 191, 187–202 (2016).

    CAS  Google Scholar 

  33. Cavosie, A. J., Valley, J. W. & Wilde, S. A. Magmatic δ18O in 4400-3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005).

    CAS  Google Scholar 

  34. Harrison, T. M., Schmitt, A. K., McCulloch, M. T. & Lovera, O. M. Early (≥ 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet. Sci. Lett. 268, 476–486 (2008).

    CAS  Google Scholar 

  35. Bell, E. A., Harrison, T. M., McCulloch, M. T. & Young, E. D. Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu-Hf, 207Pb/206Pb, and δ18O systematics of Jack Hills zircons. Geochim. Cosmochim. Acta 75, 4816–4829 (2011).

    CAS  Google Scholar 

  36. Trail, D. et al. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem. Geophys. Geosyst. 8, Q06014 (2007).

    Google Scholar 

  37. Bouvier, A. S. et al. Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. Contrib. Mineral. Petrol. 163, 745–768 (2012).

    CAS  Google Scholar 

  38. Trail, D. et al. Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon. Proc. Natl Acad. Sci. USA 115, 10287–10292 (2018).

    CAS  Google Scholar 

  39. Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).

    CAS  Google Scholar 

  40. Borisova, A. Y. et al. Hadean zircon formed due to hydrated ultramafic protocrust melting. Geology 50, 300–304 (2022).

    CAS  Google Scholar 

  41. Borisova, A. Y. et al. Hydrated peridotite – basaltic melt interaction part I: planetary felsic crust formation at shallow depth. Front Earth Sci. 9, 640464 (2021).

    Google Scholar 

  42. Bindeman, I. et al. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. Terra Nova 24, 227–232 (2012).

    CAS  Google Scholar 

  43. Bindeman, I. N. & Valley, J. W. Low-δ18O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. J. Petrol. 42, 1491–1517 (2001).

    CAS  Google Scholar 

  44. Putman, A. L., Fiorella, R. P., Bowen, G. J. & Cai, Z. A global perspective on local meteoric water lines: meta-analytic insight into fundamental controls and practical constraints. Water Resour. Res. 55, 6896–6910 (2019).

    Google Scholar 

  45. Bindeman, I. N. & O’Neil, J. Earth’s earliest hydrosphere recorded by the oldest hydrothermally-altered oceanic crust: triple oxygen and hydrogen isotopes in the 4.3-3.8 Ga Nuvvuagittuq belt, Canada. Earth Planet. Sci. Lett. 586, 117539 (2022).

    CAS  Google Scholar 

  46. Jaffrés, J. B. D., Shields, G. A. & Wallmann, K. The oxygen isotope evolution of seawater: a critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 83, 83–122 (2007).

    Google Scholar 

  47. Holmden, C. & Muehlenbachs, K. The 18O/16O ratio of 2-billion-year-old seawater inferred from ancient oceanic crust. Science 259, 1733–1736 (1993).

    CAS  Google Scholar 

  48. Pope, E. C., Bird, D. K. & Rosing, M. T. Isotope composition and volume of Earth’s early oceans. Proc. Natl Acad. Sci. USA 109, 4371–4376 (2012).

    CAS  Google Scholar 

  49. Gregory, R.T. Oxygen isotope history of seawater revisited: 3.5 billion years of the greenstone record and its implication for the stability of seawater 18O. In Stable Isotope Geochemistry: A Tribute to Samuel Epstein. Geochemical Society Special Publication 3 (eds Taylor, H. P., O'Neil, J. R. and Kaplan, I. R.) 65–76 (1991).

  50. Tartèse, R., Chaussidon, M., Gurenko, A., Delarue, F. & Robert, F. Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem. Perspect. Lett. 3, 55–65 (2017).

    Google Scholar 

  51. McGunnigle, J. P. et al. Triple oxygen isotope evidence for a hot Archean ocean. Geology 50, 991–995 (2022).

    CAS  Google Scholar 

  52. Sengupta, S. & Pack, A. Triple oxygen isotope mass balance for the Earth’s oceans with application to Archean cherts. Chem. Geol. 495, 18–26 (2018).

    CAS  Google Scholar 

  53. Lu, T. Y., He, Z. Y. & Klemd, R. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology 50, 216–221 (2022).

    CAS  Google Scholar 

  54. Korenaga, J. Hadean geodynamics and the nature of early continental crust. Precamb. Res. 359, 106178 (2021).

    CAS  Google Scholar 

  55. Hawkesworth, C. J., Cawood, P. A., Dhuime, B. & Kemp, T. I. S. Earth’s continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45, 169–198 (2017).

    CAS  Google Scholar 

  56. Van Kranendonk, M. J. et al. Elements for the origin of life on land: a deep-time perspective from the Pilbara Craton of Western Australia. Astrobiology 21, 39–59 (2021).

    Google Scholar 

  57. Stern, R. A., Bodorkos, S., Kamo, S. L., Hickman, A. H. & Corfu, F. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res. 33, 145–168 (2009).

    CAS  Google Scholar 

  58. Johnson, C. M. et al. Early Archean biogeochemical iron cycling and nutrient availability: new insights from a 3.5 Ga land-sea transition. Earth Sci. Rev. 228, 103992 (2022).

    CAS  Google Scholar 

  59. He, H. et al. A mineral-based origin of Earth’s initial hydrogen peroxide and molecular oxygen. Proc. Natl Acad. Sci. USA 120, e2221984120 (2023).

    CAS  Google Scholar 

  60. Li, X.-H. et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem. Geophys. Geosyst. 10, Q04010 (2009).

    Google Scholar 

  61. Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).

    Google Scholar 

  62. Black, L. P. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 205, 115–140 (2004).

    CAS  Google Scholar 

  63. Wiedenbeck, M. et al. Further characterisation of the 91500 Zircon crystal. Geostand. Geoanal. Res. 28, 9–39 (2004).

    CAS  Google Scholar 

  64. Zhao, W. et al. Long-term reproducibility of SIMS zircon U-Pb geochronology. J. Earth Sci. 33, 17–24 (2022).

    CAS  Google Scholar 

  65. Stacey, J. S. & Kramers, J. D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975).

    CAS  Google Scholar 

  66. Ludwig, K. R. Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, 2003).

  67. Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol. 211, 47–69 (2004).

    CAS  Google Scholar 

  68. Olierook, H. K. H. et al. Regional zircon U-Pb geochronology for the Maniitsoq region, southwest Greenland. Sci. Data 8, 139 (2021).

    CAS  Google Scholar 

  69. Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518 (2011).

    CAS  Google Scholar 

  70. Li, X.-H. et al. Penglai zircon megacrysts: a potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb Age. Geostand. Geoanal. Res. 34, 117–134 (2010).

    CAS  Google Scholar 

  71. Baertschi, P. Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31, 341–344 (1976).

    CAS  Google Scholar 

  72. Ávila, J. N. et al. High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI. Geostand. Geoanal. Res. 44, 85–102 (2020).

    Google Scholar 

  73. Liebmann, J., Kirkland, C. L., Cliff, J. B., Spencer, C. J. & Cavosie, A. J. Strategies towards robust interpretations of in situ zircon oxygen isotopes. Geosci. Front. 14, 101523 (2023).

    CAS  Google Scholar 

  74. Pidgeon, R. T., Nemchin, A. A. & Cliff, J. Interaction of weathering solutions with oxygen and U-Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contrib. Mineral. Petrol. 166, 511–523 (2013).

    CAS  Google Scholar 

  75. Van Kranendonk, M. J., Kirkland, C. L. & Cliff, J. Oxygen isotopes in Pilbara Craton zircons support a global increase in crustal recycling at 3.2 Ga. Lithos 228–229, 90–98 (2015).

    Google Scholar 

  76. Nasdala, L. et al. Metamictisation of natural zircon: accumulaton versus thermal annealing of radioactivity-induced damage. Contrib. Mineral. Petrol. 141, 125–144 (2001).

    CAS  Google Scholar 

  77. Anderson, A. J., Hanchar, J. M., Hodges, K. V. & van Soest, M. C. Mapping radiation damage zoning in zircon using Raman spectroscopy: implications for zircon chronology. Chem. Geol. 538, 119494 (2020).

    CAS  Google Scholar 

  78. Murakami, T., Chakoumakos, B., Ewing, R. C., Lumpkin, G. R. & Weber, R. J. Alpha-decay event damage in zircon. Am. Mineral. 76, 1510–1532 (1991).

    CAS  Google Scholar 

  79. Resentini, A. et al. Zircon as a provenance tracer: coupling Raman spectroscopy and U–Pb geochronology in source-to-sink studies. Chem. Geol. 555, 119828 (2020).

    CAS  Google Scholar 

  80. Liebmann, J., Spencer, C. J., Kirkland, C. L., Xia, X.-P. & Bourdet, J. Effect of water on δ18O in zircon. Chem. Geol. 574, 120243 (2021).

    CAS  Google Scholar 

  81. Gamaleldien, H. Supplementary datasets for manuscript “Onset of the Earth’s hydrological cycle four billion years ago or earlier”. Zenodo https://doi.org/10.5281/zenodo.10781567 (2024).

  82. Spaggiari, C. V., Pidgeon, R. T. & Wilde, S. A. The Jack Hills greenstone belt, Western Australia. Part 2: lithological relationships and implications for the deposition of ≥4.0 Ga detrital zircons.Precambr. Res. 155, 261–287 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Beardmore for assisting with the field trip, and SinoSteel Australia Pty Ltd for providing field accommodation. We are grateful to A. Schmitt, Y. Liu, G.-Q. Tang, X.-X.-X. Ling and J. Li for help during SIMS analyses. Financial support from the National Natural Science Foundation of China (grant number 42225301 to Q.-L.L.), the Australian Research Council (grant numbers FL150100133 to Z.-X.L. and DP200101104 to T.E.J.) and an Australian Government RTP Scholarship (to S.M.) is acknowledged. This is a contribution to IGCP 648: Supercontinent Cycles and Global Geodynamics.

Author information

Authors and Affiliations

Authors

Contributions

H.G. generated the idea, interpreted the data, prepared the figures and wrote the first draft of the manuscript. H.G., Z.-X.L. and S.A.W. did the fieldwork and collected the samples. H.G. and H.K.H.O. prepared and imaged the zircon mounts. H.G., T.E.J. and U.K. performed the statistical analysis of the data. H.G. and S.M. undertook Raman spectroscopic analyses. L.-G.W., Q.-L.L. and X.-H.L. performed the SIMS O isotope and U–Pb analyses. C.K. and. H.G. carried out the SIMS O isotope and U–Pb LA–ICPMS analyses at Curtin University. H.K.H.O. and Q.J. performed the Monte Carlo simulations. All authors participated in the preparation of the final version of the manuscript.

Corresponding author

Correspondence to Hamed Gamaleldien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Anastassia Borisova and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Alison Hunt and James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Geological map of the Jack Hills belt.

Basemap adapted with permission from ref. 24, Elsevier. Data on the position of the Cargarah Shear Zone are from ref. 82. Map created using ArcGIS Desktop 10.7 final-Curtin University licensed version (https://www.arcgis.com/home/index.html).

Extended Data Fig. 2 Cathodoluminescence (CL) and Reflected light (RL) images.

Representative CL and RL images of Jack Hills zircon grains for the two studied samples (a) 21JH-A01 and (b) 21JH-B01 showing the age, δ18O value, and Th/U ratio. The red and blue circles represent the SIMS spot locations for O and U-Pb analyses.

Extended Data Fig. 3 Jack Hills zircon U-Pb age.

The U-Pb age distribution using the histogram and probability density plot of all studied zircons from (a) sample 21JH-A01 and (b) sample 21JH-B01.

Extended Data Fig. 4 Jack Hills zircon δ18O (‰) versus age (Ma) for all analysed individual magmatic grains.

The horizontal grey band shows the δ18O values of mantle zircon (5.3 ± 0.6 ‰, 2 SD)10. Uncertainties on individual data points are 2 s.d. (a) Sample 21JH-A01 (n = 672 analyses) and (b) Sample 21JH-B01 (n = 700 analyses). Red circles in panel B represent the SIMS analyses did at Curtin University.

Extended Data Fig. 5 Jack Hills zircon δ18O (‰) versus age (Ma) for individual magmatic grains.

All data in this study have been filtered for <5% U–Pb discordance (n=1052). Previous Jack Hills data are from references23,29,30,31,32,33,34,35. The horizontal grey band shows the δ18O values of mantle zircon (5.3 ± 0.6 ‰, 2 s.d.)10. The vertical light blue bands show the two main zones of light δ18O values with excursions at ~ 4.02 Ga and ~3.40 Ga. Uncertainties on individual data points are at 2 s.d. U–Pb age data are show as kernel density (light pink) and histogram plot. The right panel of the figure shows a histogram and kernel density plot (orange) of the δ18O values of Jack Hills zircon.

Extended Data Fig. 6 Representative CL and RL images of zircon grains from Jack Hills zircon showing sub-mantle δ18O ( < 4.7 ‰) values.

CL and RL images of Jack Hills zircon grains for the two studied samples (a) 21JH-A01 and (b) 21JH-B01. The red circles represent the SIMS O isotopes and Raman spot locations, whereas the blue circles represent the SIMS spot locations for U–Pb analyses. The age, δ18O values, Th/U ratio, and FWHM values (cm−1) are shown below each image.

Extended Data Fig. 7 Jack Hills zircon δ18O (‰) versus U (ppm), Th/U ratio, and discordance percentage for samples 21JH-A01 and 21JH-B01.

(a, b) δ18O vs. U content. (c, d) δ18O vs. Th/U ratio. (e, f) δ18O vs. discordance % (expressed as the percentage difference between the 206 Pb/238U versus 207 Pb/206 Pb age). The filtered analyses (n = 498 for sample 21JH–A01 and n = 388 for sample 21JH–B01; total = 886). Red circles in panel B (21JH-B01) represent the SIMS analyses did at Curtin University.

Extended Data Fig. 8 Raman spectroscopic spectra and zircon δ18O (‰), U (ppm), Th/U ratio, and discordance percentage.

(a) Raman spectra for representative grains including the zircon standards. (b-e) FWHM values (cm–1) versus δ18O (‰), U contents, Th/U ratios, and discordance percentage show no correlation and support a primary origin for the signatures of these zircons.

Extended Data Fig. 9 Zircon δ18O (‰) versus age (Ma) for Archean TTG from different cratons.

All the data have <5% discordant U–Pb systematics (n = 1680). The data are compiled from Refs. 21,43. The horizontal grey band shows the δ18O values of mantle zircon (5.3 ± 0.6 ‰, 2 s.d.).

Extended Data Fig. 10 Jack Hills zircon δ18O (‰) versus age (Ma) with statistical mean analysis.

All data is shown and treated as in Fig. 1 (n=1052). Data are presented as a running average with respective standard deviations (+/– s.d.) in red. The green and blue lines show the 0.95/0.05 and 0.9/0.1 quantiles of the data, respectively. Below the main graphs, the standard deviation, and the difference between the 0.95 and 0.05 and between 0.9 and 0.1 quantiles are shown versus age. In order to assess the influence of bin size and step length, two examples with bin sizes of (a)100 and 50 Ma and step lengths of (b) 50 and 10 Ma are shown, respectively.

Supplementary information

Supplementary Data 1

Supplementary Tables 1–4.

Source data

Source Data Fig. 1

Previously published Jack Hills zircon oxygen isotope data with <5% discordance.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamaleldien, H., Wu, LG., Olierook, H.K.H. et al. Onset of the Earth’s hydrological cycle four billion years ago or earlier. Nat. Geosci. 17, 560–565 (2024). https://doi.org/10.1038/s41561-024-01450-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01450-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing