Abstract
Fine-grained muds produced largely from rock weathering at the Earth’s surface have great influence on global carbon cycling. Mud binds and protects organic carbon (OC) from remineralization, and its organic loading controls the amounts, timescales and pathways of OC sequestration in sediments and soils. Human activities have resulted in marked changes (both increases and decreases) in mud accumulation and associated OC (mud–OC) loadings in different environments via altering organic matter inputs and reactivity. Such impacts on mud and mud–OC can be directly caused by activities such as damming and levee building, or indirectly result from human-induced climate change. Here we present a synthesis of impacts of human activities on the production, transfer and storage of mud–OC. In general, we find that anthropogenic climate warming has increased net fluxes of mud–OC in most of the systems discussed here (for example, mountain glaciers, land erosion, dam burial, river export, permafrost thaw, ice-sheet erosion and burial in margins), with uncertainties for tidal flats and floodplains, and probably net losses for coastal wetlands. Whether the anthropogenic mobilization of mud–OC results in more or less sequestration of OC is not known with the current data, as it is dependent on timescales that involve complex transient effects.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Deevey, E. S. In defense of mud. Bull. Ecol. Soc. Am. 51, 5–8 (1970).
Malakoff, D. Mud. Science 369, 894–895 (2020).
Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4, 401–423 (2012).
Eglinton, T. I. et al. Climate control on terrestrial biospheric carbon turnover. Proc. Natl Acad. Sci. USA 118, e2011585118 (2021).
Regnier, P., Resplandy, L., Najjar, R. G. & Ciais, P. The land-to-ocean loops of the global carbon cycle. Nature 603, 401–410 (2022).
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
Blatt, H. Sedimentary Petrology (1982).
Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).
Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).
Rosentreter, J. A. et al. Coastal vegetation and estuaries are collectively a greenhouse gas sink. Nat. Clim. Change 13, 579–587 (2023).
Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).
Borrelli, P. et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 8, 2013 (2017).
Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).
Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene–HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).
Kemp, D. B., Sadler, P. M. & Vanacker, V. The human impact on North American erosion, sediment transfer, and storage in a geologic context. Nat. Commun. 11, 6012 (2020).
Zhang, F. et al. Human impacts overwhelmed hydroclimate control of soil erosion in china 5,000 years ago. Geophys. Res. Lett. 49, e2021GL096983 (2022).
Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).
Panagos, P. et al. Projections of soil loss by water erosion in Europe by 2050. Environ. Sci. Policy 124, 380–392 (2021).
Li, G. et al. Dam-triggered organic carbon sequestration makes the Changjiang (Yangtze) River basin (China) a significant carbon sink. J. Geophys. Res. Biogeosci. 120, 39–53 (2015).
Zhang, H. et al. Global changes alter the amount and composition of land carbon deliveries to European rivers and seas. Commun. Earth Environ. 3, 245 (2022).
IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).
Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land–ocean interface. Org. Geochem. 115, 138–155 (2018).
Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).
Kuehl, S. A. et al. Asia’s mega rivers: common source, diverse fates. Eos 10.1029/2020EO143936 (2020).
Dethier, E. N., Renshaw, C. E. & Magilligan, F. J. Rapid changes to global river suspended sediment flux by humans. Science 376, 1447–1452 (2022).
Mendonca, R. et al. Hydroelectric carbon sequestration. Nat. Geosci. 5, 838–840 (2012).
Maavara, T., Lauerwald, R., Regnier, P. & Van Cappellen, P. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 8, 15347 (2017).
Charoenlerkthawin, W. et al. Effects of dam construction in the Wang River on sediment regimes in the Chao Phraya River basin. Water 13, 2146 (2021).
Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & Del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).
Kastowski, M., Hinderer, M. & Vecsei, A. Long‐term carbon burial in European lakes: analysis and estimate. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003874 (2011).
Hoffmann, T. O. in Treatise on Geomorphology 2nd edn (ed. Shroder, J. F.) 458–477 (Academic Press, 2022).
Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).
Lewin, J. & Ashworth, P. J. The negative relief of large river floodplains. Earth-Sci. Rev. 129, 1–23 (2014).
Blattmann, T. M. Mineralogical control on the fate of continentally derived organic matter in the ocean. Science 366, 742–745 (2019).
Repasch, M. et al. Fluvial organic carbon cycling regulated by sediment transit time and mineral protection. Nat. Geosci. 14, 842–848 (2021).
Repasch, M. et al. River organic carbon fluxes modulated by hydrodynamic sorting of particulate organic matter. Geophys. Res. Lett. 49, e2021GL096343 (2022).
Scheingross, J. S. et al. The fate of fluvially-deposited organic carbon during transient floodplain storage. Earth Planet. Sci. Lett. 561, 116822 (2021).
Bianchi, T. S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc. Natl Acad. Sci. USA 108, 19473–19481 (2011).
Grant, K. E., Galy, V. V., Haghipour, N., Eglinton, T. I. & Derry, L. A. Persistence of old soil carbon under changing climate: the role of mineral–organic matter interactions. Chem. Geol. 587, 120629 (2022).
Wu, L. et al. Impacts of land use change on river systems for a river network plain. Water 10, 609 (2018).
Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).
Wissing, L. et al. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 228, 90–103 (2014).
Julian, J. P., Wilgruber, N. A., de Beurs, K. M., Mayer, P. M. & Jawarneh, R. N. Long-term impacts of land cover changes on stream channel loss. Sci. Total Environ. 537, 399–410 (2015).
Golombek, N. Y. et al. Fluvial organic carbon composition regulated by seasonal variability in lowland river migration and water discharge. Geophys. Res. Lett. 48, e2021GL093416 (2021).
Tessler, Z. D., Vörösmarty, C. J., Grossberg, M., Gladkova, I. & Aizenman, H. A global empirical typology of anthropogenic drivers of environmental change in deltas. Sustain. Sci. 11, 525–537 (2016).
Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).
Rodriguez, A., McKee, B., Miller, C., Bost, M. & Atencio, A. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nat. Commun. 11, 3249 (2020).
van de Lageweg, W. I., Braat, L., Parsons, D. R. & Kleinhans, M. G. Controls on mud distribution and architecture along the fluvial-to-marine transition. Geology 46, 971–974 (2018).
Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).
Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749 (2022).
Pinsonneault, A. J. et al. Dissolved organic carbon sorption dynamics in tidal marsh soils. Limnol. Oceanogr. 66, 214–225 (2021).
Ilgen, A. G. et al. Shales at all scales: exploring coupled processes in mudrocks. Earth-Sci. Rev. 166, 132–152 (2017).
Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).
Tanski, G. et al. Permafrost carbon and CO2 pathways differ at contrasting coastal erosion sites in the Canadian Arctic. Front. Earth Sci. https://doi.org/10.3389/feart.2021.630493 (2021).
Zhang, X. et al. Recent warming fuels increased organic carbon export from Arctic permafrost. AGU Adv. 2, e2021AV000396 (2021).
Schirrmeister, L. The genesis of Yedoma Ice Complex permafrost – grain-size endmember modeling analysis from Siberia and Alaska. EG Quat. Sci. J. 69, 33–53 (2020).
Palmtag, J. & Kuhry, P. Grain size controls on cryoturbation and soil organic carbon density in permafrost‐affected soils. Permafr. Periglac. Process. 29, 112–120 (2018).
Vonk, J. E. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489, 137–140 (2012).
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).
Cunliffe, A. M. Rapid retreat of permafrost coastline observed with aerial drone photogrammetry. Cryosphere 13, 1513–1528 (2019).
Cui, X., Bianchi, T. S., Jaeger, J. M. & Smith, R. W. Biospheric and petrogenic organic carbon flux along southeast Alaska. Earth Planet. Sci. Lett. 452, 238–246 (2016).
Jervey, M. T. in Sea-Level Changes: An Integrated Approach (eds Wilgus, C. K. et al.) (SEPM Society for Sedimentary Geology, 1988).
Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea‐level rise. Front. Ecol. Environ. 14, 307–316 (2016).
Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).
Ouyang, X. & Lee, S. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11, 5057–5071 (2014).
Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).
Brown, S. & Nicholls, R. J. Subsidence and human influences in mega deltas: the case of the Ganges–Brahmaputra–Meghna. Sci. Total Environ. 527, 362–374 (2015).
Meselhe, E., White, E., Wang, Y. & Reed, D. Uncertainty analysis for landscape models used for coastal planning. Estuar. Coast. Shelf Sci. 256, 107371 (2021).
Roe, G. H., Baker, M. B. & Herla, F. Centennial glacier retreat as categorical evidence of regional climate change. Nat. Geosci. 10, 95–99 (2017).
Losapio, G. et al. The consequences of glacier retreat are uneven between plant species. Front. Ecol. Evol. 8, 616562 (2021).
Strzelecki, M. C. et al. New fjords, new coasts, new landscapes: the geomorphology of paraglacial coasts formed after recent glacier retreat in Brepollen (Hornsund, southern Svalbard). Earth Surf. Process. Landf. 45, 1325–1334 (2020).
Dümig, A., Häusler, W., Steffens, M. & Kögel-Knabner, I. Clay fractions from a soil chronosequence after glacier retreat reveal the initial evolution of organo–mineral associations. Geochim. Cosmochim. Acta 85, 1–18 (2012).
Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).
Mayer, L. M. Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58, 1271–1284 (1994).
Aller, R. C. & Blair, N. E. Carbon remineralization in the Amazon–Guianas tropical mobile mudbelt: a sedimentary incinerator. Cont. Shelf Res. 26, 2241–2259 (2006).
Ai, L. et al. How did the climate and human activities modulate the sedimentary evolution of the Central Yellow Sea Mud, China. J. Asian Earth Sci. 235, 105299 (2022).
Luo, X., Yang, S., Wang, R., Zhang, C. & Li, P. New evidence of Yangtze Delta recession after closing of the Three Gorges Dam. Sci. Rep. 7, 41735 (2017).
Nittrouer, C. A. et al. Amazon sediment transport and accumulation along the continuum of mixed fluvial and marine processes. Annu. Rev. Mar. Sci. 13, 501–536 (2021).
Mackenzie, F. T., Ver, L. M. & Lerman, A. Century-scale nitrogen and phosphorus controls of the carbon cycle. Chem. Geol. 190, 13–32 (2002).
Lacroix, F., Ilyina, T., Mathis, M., Laruelle, G. G. & Regnier, P. Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle. Glob. Change Biol. 27, 5491–5513 (2021).
Fennel, K. & Testa, J. M. Biogeochemical controls on coastal hypoxia. Annu. Rev. Mar. Sci. 11, 105–130 (2019).
Yao, P. et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation. Cont. Shelf Res. 91, 1–11 (2014).
Hilton, R. G., Galy, A., Hovius, N., Horng, M.-J. & Chen, H. Efficient transport of fossil organic carbon to the ocean by steep mountain rivers: an orogenic carbon sequestration mechanism. Geology 39, 71–74 (2011).
Bouchez, J. et al. Source, transport and fluxes of Amazon River particulate organic carbon: insights from river sediment depth-profiles. Geochim. Cosmochim. Acta 133, 280–298 (2014).
Keil, R. G. & Mayer, L. M. in Treatise on Geochemistry (eds Holland, H .D. and Turekian, K. K.) 337–359 (Elsevier, 2014).
Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci. Rev. 123, 53–86 (2013).
Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).
Arnarson, T. S. & Keil, R. G. Changes in organic matter–mineral interactions for marine sediments with varying oxygen exposure times. Geochim. Cosmochim. Acta 71, 3545–3556 (2007).
Bruni, E. T. et al. Sedimentary hydrodynamic processes under low-oxygen conditions: implications for past, present, and future oceans. Front. Earth Sci. 10, 886395 (2022).
Petit, J.-R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).
Hilton, R. G. & West, A. J. Mountains, erosion and the carbon cycle. Nat. Rev. Earth Environ. 1, 284–299 (2020).
Hemingway, J. D. et al. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science 360, 209–212 (2018).
Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).
Tian, H. et al. Increased terrestrial carbon export and CO2 evasion from global inland waters since the preindustrial era. Glob. Biogeochem. Cycles 37, e2023GB007776 (2023).
Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2017).
Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).
Wadham, J. L. et al. Ice sheets matter for the global carbon cycle. Nat. Commun. 10, 3567 (2019).
Middelburg, J. J. Marine Carbon Biogeochemistry: A Primer for Earth System Scientists (Springer, 2019).
Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).
LaRowe, D. E. et al. Organic carbon and microbial activity in marine sediments on a global scale throughout the Quaternary. Geochim. Cosmochim. Acta 286, 227–247 (2020).
Bradley, J. A., Hülse, D., LaRowe, D. E. & Arndt, S. Transfer efficiency of organic carbon in marine sediments. Nat. Commun. 13, 7297 (2022).
Faust, J. C. et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nat. Commun. 12, 275 (2021).
Suello, R. H. et al. Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient. Biogeosciences 19, 1571–1585 (2022).
Gu, X. & Brantley, S. L. How particle size influences oxidation of ancient organic matter during weathering of black shale. ACS Earth Space Chem. 6, 1443–1459 (2022).
Kennedy, M., Droser, M., Mayer, L. M., Pevear, D. & Mrofka, D. Late Precambrian oxygenation; inception of the clay mineral factory. Science 311, 1446–1449 (2006).
Hage, S. et al. High rates of organic carbon burial in submarine deltas maintained on geological timescales. Nat. Geosci. 15, 919–924 (2022).
Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).
Keiluweit, M., Gee, K., Denney, A. & Fendorf, S. Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biol. Biochem. 118, 42–50 (2018).
Curry, K. J. et al. Direct visualization of clay microfabric signatures driving organic matter preservation in fine-grained sediment. Geochim. Cosmochim. Acta 71, 1709–1720 (2007).
Silburn, B. et al. Benthic pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal variability. Biogeochemistry 135, 69–88 (2017).
Georgiou, K. et al. Global stocks and capacity of mineral-associated soil organic carbon. Nat. Commun. 13, 3797 (2022).
Hedges, J. I. & Oades, J. M. Comparative organic geochemistries of soils and marine sediments. Org. Geochem. 27, 319–361 (1997).
Potter, P. E., Maynard, J. B. & Depetris, P. J. Mud and Mudstones: Introduction and Overview (Springer, 2005).
Cai, C. et al. Occurrence of organic matter in argillaceous sediments and rocks and its geological significance: a review. Chem. Geol. 639, 121737 (2023).
Bock, M. J. & Mayer, L. M. Mesodensity organo–clay associations in a near-shore sediment. Mar. Geol. 163, 65–75 (2000).
Virto, I., Moni, C., Swanston, C. & Chenu, C. Turnover of intra-and extra-aggregate organic matter at the silt-size scale. Geoderma 156, 1–10 (2010).
Blair, N. E., Leithold, E. L. & Aller, R. C. From bedrock to burial: the evolution of particulate organic carbon across coupled watershed–continental margin systems. Mar. Chem. 92, 141–156 (2004).
Acknowledgements
The Jon and Beverly Thompson Chair in Geological Sciences at the University of Florida provided support for T.S.B. D.B.K. was supported by the National Key R&D Program of China (grant no. 2023YFF0804000). P.R. received financial support from the European Union’s Horizon 2020 research and innovation programme ESM2025 – Earth System Models for the Future project (grant no. 101003536) and the Belgian Science Policy Office (grant no. FED-tWIN2019prf-008). S.A. received funding from the Belgian Science Policy Office (grant no. FED-tWIN2019prf-008). V.G. received funds from NSF-OCE-1851309.
Author information
Authors and Affiliations
Contributions
T.S.B., L.M.M., J.H.F.A., S.A., V.G., D.B.K., S.A.K., N.J.M. and P.R. contributed to the conceptual development and writing of this paper. T.S.B., L.M.M and J.H.F.A. were key in leading the group through different stages of progress and revision. T.S.B., J.H.F.A, L.M.M., S.A., N.J.M. and P.R. contributed greatly to development and revisions of the table and figures.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Marisa Repasch, Joel Scheingross and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Xujia Jiang, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Fig. 1 and references.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bianchi, T.S., Mayer, L.M., Amaral, J.H.F. et al. Anthropogenic impacts on mud and organic carbon cycling. Nat. Geosci. 17, 287–297 (2024). https://doi.org/10.1038/s41561-024-01405-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-024-01405-5